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Abstract

This paper is on video recognition using Transformers. Very recent attempts in
this area have demonstrated promising results in terms of recognition accuracy,
yet they have been also shown to induce, in many cases, significant computational
overheads due to the additional modelling of the temporal information. In this
work, we propose a Video Transformer model the complexity of which scales
linearly with the number of frames in the video sequence and hence induces
no overhead compared to an image-based Transformer model. To achieve this,
our model makes two approximations to the full space-time attention used in
Video Transformers: (a) It restricts time attention to a local temporal window
and capitalizes on the Transformer’s depth to obtain full temporal coverage of the
video sequence. (b) It uses efficient space-time mixing to attend jointly spatial and
temporal locations without inducing any additional cost on top of a spatial-only
attention model. We also show how to integrate 2 very lightweight mechanisms for
global temporal-only attention which provide additional accuracy improvements at
minimal computational cost. We demonstrate that our model produces very high
recognition accuracy on the most popular video recognition datasets while at the
same time being significantly more efficient than other Video Transformer models.
Code will be made available.

1 Introduction

Video recognition – in analogy to image recognition – refers to the problem of recognizing events
of interest in video sequences such as human activities. Following the tremendous success of
Transformers in sequential data, specifically in Natural Language Processing (NLP) [34, 5], Vision
Transformers were very recently shown to outperform CNNs for image recognition too [43, 11, 30],
signaling a paradigm shift on how visual understanding models should be constructed. In light of
this, in this paper, we propose a Video Transformer model as an appealing and promising solution for
improving the accuracy of video recognition models.

A direct, natural extension of Vision Transformers to the spatio-temporal domain is to perform the
self-attention jointly across all S spatial locations and T temporal locations. Full space-time attention
though has complexityO(T 2S2) making such a model computationally heavy and, hence, impractical
even when compared with the 3D-based convolutional models. As such, our aim is to exploit the
temporal information present in video streams while minimizing the computational burden within the
Transformer framework for efficient video recognition.
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(a) Full space-time atten-
tion: O(T 2S2)

(b) Spatial-only attention:
O(TS2)

(c) TimeSformer [3]:
O(T 2S + TS2)

(d) Ours: O(TS2)

Figure 1: Different approaches to space-time self-attention for video recognition. In all cases, the key
locations that the query vector, located at the center of the grid in red, attends are shown in orange.
Unlike prior work, our key vector is constructed by mixing information from tokens located at the
same spatial location within a local temporal window. Our method then performs self-attention with
these tokens. Note that our mechanism allows for an efficient approximation of local space-time
attention at no extra cost when compared to a spatial-only attention model.

A baseline solution to this problem is to consider spatial-only attention followed by temporal
averaging, which has complexity O(TS2). Similar attempts to reduce the cost of full space-time
attention have been recently proposed in [3, 1]. These methods have demonstrated promising results
in terms of video recognition accuracy, yet they have been also shown to induce, in most of the
cases, significant computational overheads compared to the baseline (spatial-only) method due to the
additional modelling of the temporal information.

Our main contribution in this paper is a Video Transformer model that has complexity O(TS2)
and, hence, is as efficient as the baseline model, yet, as our results show, it outperforms re-
cently/concurrently proposed work [3, 1] in terms of efficiency (i.e. accuracy/FLOP) by significant
margins. To achieve this, our model makes two approximations to the full space-time attention used
in Video Transformers: (a) It restricts time attention to a local temporal window and capitalizes on
the Transformer’s depth to obtain full temporal coverage of the video sequence. (b) It uses efficient
space-time mixing to attend jointly spatial and temporal locations without inducing any additional
cost on top of a spatial-only attention model. Fig. 1 shows the proposed approximation to space-time
attention. We also show how to integrate two very lightweight mechanisms for global temporal-only
attention, which provide additional accuracy improvements at minimal computational cost. We
demonstrate that our model is surprisingly effective in terms of capturing long-term dependencies and
producing very high recognition accuracy on the most popular video recognition datasets, including
Something-Something-v2 [15], Kinetics [4] and Epic Kitchens [7], while at the same time being
significantly more efficient than other Video Transformer models.

2 Related work

Video recognition: Standard solutions are based on CNNs and can be broadly classified into two
categories: 2D- and 3D-based approaches. 2D-based approaches process each frame independently
to extract frame-based features which are then aggregated temporally with some sort of temporal
modeling (e.g. temporal averaging) performed at the end of the network [37, 24, 25]. The works
of [24, 25] use the “shift trick” [40] to have some temporal modeling at a layer level. 3D-based
approaches [4, 14, 31] are considered the current state-of-the-art as they can typically learn stronger
temporal models via 3D convolutions. However, they also incur higher computational and memory
costs. To alleviate this, a large body of works attempt to improve their efficiency via spatial and/or
temporal factorization [33, 32, 13].

CNN vs ViT: Historically, video recognition approaches tend to mimic the architectures used for
image classification (e.g. from AlexNet [21] to [18] or from ResNet [16] and ResNeXt [42] to [14]).
After revolutionizing NLP [34, 28], very recently, Transformer-based architectures showed promising
results on large scale image classification too [11]. While self-attention and attention were previously
used in conjunction with CNNs at a layer or block level [6, 44, 29], the Vision Transformer (ViT)
of Dosovitskiy et al. [11] is the first convolution-free, Transformer-based architecture that achieves
state-of-the-art results on ImageNet [9].
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Video Transformer: Recently/concurrently with our work, vision transformer architectures, derived
from [11], were used for video recognition [3, 1], too. Because performing full space-time attention
is computationally prohibitive (i.e. O(T 2S2)), their main focus is on reducing this via temporal and
spatial factorization. In TimeSformer [3], the authors propose applying spatial and temporal attention
in an alternating manner reducing the complexity to O(T 2S + TS2). In a similar fashion, ViViT [1]
explores several avenues for space-time factorization. In addition, they also proposed to adapt the
patch embedding process from [11] to 3D (i.e. video) data. Our work proposes a completely different
approximation to full space-time attention that is also efficient. To this end, we firstly restrict full
space-time attention to a local temporal window which is reminiscent of [2] but applied here to
space-time attention and video recognition. Secondly, we define a local joint space-time attention
which we show that can be implemented efficiently via the “shift trick” [40].

3 Method

Video Transformer: We are given a video clip X ∈ RT×H×W×C (C = 3, S = HW ). Following
ViT [11], each frame is divided into K ×K non-overlapping patches which are then mapped into
visual tokens using a linear embedding layer E ∈ R3K2×d. Since self-attention is permutation
invariant, in order to preserve the information regarding the location of each patch within space
and time, we also learn two positional embeddings, one for space: ps ∈ R1×S×d and one for time:
pt ∈ RT×1×d. These are then added to the initial visual tokens. Finally, the token sequence is
processed by L Transformer layers.

The visual token at layer l, spatial location s and temporal location t is denoted as:

zls,t ∈ Rd, l = 0, . . . , L− 1, s = 0, . . . , S − 1, t = 0, . . . , T − 1. (1)

In addition to the TS visual tokens extracted from the video, a special classification token zlcls ∈ Rd

is prepended to the token sequence [10]. The l−th Transformer layer processes the visual tokens
Zl ∈ R(TS+1)×d of the previous layer using a series of Multi-head Self-Attention (MSA), Layer
Normalization (LN), and MLP (Rd → R4d → Rd) layers as follows:

Yl = MSA(LN(Zl−1)) + Zl−1, (2)

Zl+1 = MLP(LN(Yl)) +Yl. (3)

The main computation of a single full space-time Self-Attention (SA) head boils down to calculating:

yl
s,t =

T−1∑
t′=0

S−1∑
s′=0

Softmax{(ql
s,t · kl

s′,t′)/
√
dh}vl

s′,t′ ,
{ s=0,...,S−1

t=0,...,T−1
}

(4)

where ql
s,t,k

l
s,t,v

l
s,t ∈ Rdh are the query, key, and value vectors computed from zls,t (after LN) using

embedding matrices Wq,Wk,Wv ∈ Rd×dh . Finally, the output of the h heads is concatenated and
projected using embedding matrix Wh ∈ Rhdh×d.

The complexity of the full model is: O(3hTSddh) (qkv projections) +O(2hT 2S2dh) (MSA for h
attention heads) +O(TS(hdh)d) (multi-head projection) +O(4TSd2) (MLP). From these terms, our
goal is to reduce the cost O(2T 2S2dh) (for a single attention head) of the full space-time attention
which is the dominant term. For clarity, from now on, we will drop constant terms and dh to report
complexity unless necessary. Hence, the complexity of the full space-time attention is O(T 2S2).

Our baseline is a model that performs a simple approximation to the full space-time attention by
applying, at each Transformer layer, spatial-only attention:

yl
s,t =

S−1∑
s′=0

Softmax{(ql
s,t · kl

s′,t)/
√
dh}vl

s′,t,
{ s=0,...,S−1

t=0,...,T−1
}

(5)

the complexity of which is O(TS2). Notably, the complexity of the proposed space-time mixing
attention is also O(TS2). Following spatial-only attention, simple temporal averaging is performed
on the class tokens zfinal = 1

T

∑
t
zL−1t,cls to obtain a single feature that is fed to the linear classifier.
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Recent work by [3, 1] has focused on reducing the cost O(T 2S2) of the full space-time attention of
Eq. 4. Bertasius et al. [3] proposed the factorised attention:

ỹl
s,t =

T−1∑
t′=0

Softmax{(ql
s,t · kl

s,t′)/
√
dh}vl

s,t′ ,

yl
s,t =

S−1∑
s′=0

Softmax{q̃l
s,t · k̃l

s′,t)/
√
dh}ṽl

s′,t,

{
s = 0, . . . , S − 1
t = 0, . . . , T − 1

}
, (6)

where q̃l
s,t, k̃

l
s′,tṽ

l
s′,t are new query, key and value vectors calculated from ỹl

s,t
1. The above model

reduces complexity to O(T 2S + TS2). However, temporal attention is performed for a fixed spatial
location which is ineffective when there is camera or object motion and there is spatial misalignment
between frames.

The work of [1] is concurrent to ours and proposes the following approximation: Ls Transformer
layers perform spatial-only attention as in Eq. 5 (each with complexity O(S2)). Following this,
there are Lt Transformer layers performing temporal-only attention on the class tokens zLs

t . The
complexity of the temporal-only attention is, in general, O(T 2).

Our model aims to better approximate the full space-time self-attention (SA) of Eq. 4 while keeping
complexity to O(TS2), i.e. inducing no further complexity to a spatial-only model.

To achieve this, we make a first approximation to perform full space-time attention but restricted to a
local temporal window [−tw, tw]:

yl
s,t =

t+tw∑
t′=t−tw

S−1∑
s′=0

Softmax{(ql
s,t · kl

s′,t′)/
√
dh}vl

s′,t′ =

t+tw∑
t′=t−tw

Vl
t′a

l
t′ ,
{ s=0,...,S−1

t=0,...,T−1
}

(7)

where Vl
t′ = [vl

0,t′ ;v
l
1,t′ ; . . . ;v

l
S−1,t′ ] ∈ Rdh×S and alt′ = [al0,t′ , a

l
1,t′ , . . . , a

l
S−1,t′ ] ∈ RS is the

vector with the corresponding attention weights. Eq. 7 shows that, for a single Transformer layer,
yl
s,t is a spatio-temporal combination of the visual tokens in the local window [−tw, tw]. It follows

that, after k Transformer layers, yl+k
s,t will be a spatio-temporal combination of the visual tokens in

the local window [−ktw, ktw] which in turn conveniently allows to perform spatio-temporal attention
over the whole clip. For example, for tw = 1 and k = 4, the local window becomes [−4, 4] which
spans the whole video clip for the typical case T = 8.

The complexity of the local self-attention of Eq. 7 is O((2tw + 1)TS2). To reduce this even further,
we make a second approximation on top of the first one as follows: the attention between spatial
locations s and s′ according to the model of Eq. 7 is:

t+tw∑
t′=t−tw

Softmax{(ql
s,t · kl

s′,t′)/
√
dh}vl

s′,t′ , (8)

i.e. it requires the calculation of 2tw +1 attentions, one per temporal location over [−tw, tw]. Instead,
we propose to calculate a single attention over [−tw, tw] which can be achieved by ql

s,t attending
kl
s′,−tw:tw

, [kl
s′,t−tw ; . . . ;k

l
s′,t+tw

] ∈ R(2tw+1)dh . Note that to match the dimensions of ql
s,t

and kl
s′,−tw:tw

a further projection of kl
s′,−tw:tw

to Rdh is normally required which has complexity
O((2tw+1)d2h) and hence compromises the goal of an efficient implementation. To alleviate this, we
use the “shift trick” [40, 24] which allows to perform both zero-cost dimensionality reduction, space-
time mixing and attention (between ql

s,t and kl
s′,−tw:tw

) in O(dh). In particular, each t′ ∈ [−tw, tw]
is assigned dt

′

h channels from dh (i.e.
∑

t′ d
t′

h = dh). Let kl
s′,t′(d

t′

h ) ∈ Rdt′
h denote the operator for

indexing the dt
′

h channels from kl
s′,t′ . Then, a new key vector is constructed as:

k̃l
s′,−tw:tw , [kl

s′,t−tw(d
t−tw
h ), . . . ,kl

s′,t+tw(d
t+tw
h )] ∈ Rdh . (9)

1More precisely, Eq. 6 holds for h = 1 heads. For h > 1, the different heads ỹl,h
s,t are concatenated and

projected to produce ỹl
s,t.
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Figure 2: Detailed self-attention computation graph for (a) full space-time attention and (b) the
proposed space-time mixing approximation. Notice that in our case only S tokens participate instead
of TS. The temporal information is aggregated by indexing channels from adjacent frames. Tokens of
identical colors share the same temporal index.

Fig. 2 shows how the key vector k̃l
s′,−tw:tw

is constructed. In a similar way, we also construct a new
value vector ṽl

s′,−tw:tw
. Finally, the proposed approximation to the full space-time attention is given

by:

yls
s,t =

S−1∑
s′=0

Softmax{(qls
s,t · k̃l

s′,−tw:tw)/
√
dh}ṽl

s′,−tw:tw ,
{ s=0,...,S−1

t=0,...,T−1
}
. (10)

This has the complexity of a spatial-only attention (O(TS2)) and hence it is more efficient than
previously proposed video transformers [3, 1]. Our model also provides a better approximation to the
full space-time attention and as shown by our results it significantly outperforms [3, 1].

Temporal Attention aggregation: The final set of the class tokens zL−1t,cls , 0 ≤ t ≤ L− 1 are used
to generate the predictions. To this end, we propose to consider the following options: (a) simple
temporal averaging zfinal =

1
T

∑
t z

L−1
t,cls as in the case of our baseline. (b) An obvious limitation

of temporal averaging is that the output is treated purely as an ensemble of per-frame features and,
hence, completely ignores the temporal ordering between them. To address this, we propose to use
a lightweight Temporal Attention (TA) mechanism that will attend the T classification tokens. In
particular, a zfinal token attends the sequence [zL−10,cls, . . . , z

L−1
T−1,cls] using a temporal Transformer

layer and then fed as input to the classifier. This is akin to the (concurrent) work of [1] with the
difference being that in our model we found that a single TA layer suffices whereas [1] uses Lt. A
consequence of this is that the complexity of our layer is O(T ) vs O(2(Lt − 1)T 2 + T ) of [1].

Summary token: As an alternative to TA, herein, we also propose a simple lightweight mechanism
for information exchange between different frames at intermediate layers of the network. Given
the set of tokens for each frame t, Zl−1

t ∈ R(S+1)×dh (constructed by concatenating all tokens
zl−1s,t , s = 0, . . . , S), we compute a new set of R tokens Zl

r,t = φ(Zl−1
t ) ∈ RR×dh which summarize

the frame information and hence are named “Summary” tokens. These are, then, appended to the
visual tokens of all frames to calculate the keys and values so that the query vectors attend the
original keys plus the Summary tokens. Herein, we explore the case that φ(.) performs simple spatial
averaging zl0,t =

1
S

∑
s z

l
s,t over the tokens of each frame (R = 1 for this case). Note that, forR = 1,

the extra cost that the Summary token induces is O(TS).

X-ViT: We call the Video Transformer based on the proposed (a) space-time mixing attention and (b)
lightweight global temporal attention (or summary token) as X-ViT.
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4 Results

4.1 Experimental setup

Datasets: We trained and evaluated the proposed models on the following datasets (all datasets are
publicly available for research purposes):

Kinetics-400 and 600: The Kinetics [19] dataset consists of short clips (typically 10 sec long) sampled
from YouTube and labeled using 400 and 600 classes, respectively. Due to the removal of certain
videos from YouTube, the versions of the datasets used in this paper consist of approximately 261k
clips for Kinetics-400 and 457k for Kinetics-600. Note, that these numbers are lower than the original
datasets and thus might induce a negative performance bias when compared with prior works.

Something-Something-v2 (SSv2): The SSv2 [15] dataset consists of 220,487 short videos, with a
length between 2 and 6 seconds that picture humans performing pre-defined basic actions with
everyday objects. Since the objects and backgrounds in the videos are consistent across different
action classes, this dataset tends to require stronger temporal modeling. Due to this, we conducted
most of our ablation studies on SSv2 to better analyze the importance of the proposed components.

Epic Kitchens-100 (Epic-100): Epic-100 is an egocentric large scale action recognition dataset
consisting of more than 90,000 action segments that span across 100 hours of recordings in native
environments, capturing daily activities [8]. The dataset is labeled using 97 verb and 300 noun
classes. The evaluation results are reported using the standard action recognition protocol: the
network predicts the “verb” and the “noun” using two heads. The predictions are then merged to
construct an “action” which is used to calculate the accuracy.

Network architecture: The backbone models closely follow the ViT architecture [11]. Most of the
experiments were performed using the ViT-B/16 variant (L = 12, h = 12, d = 768, K = 16), where
L represents the number of transformer layers, h the number of heads, d the embedding dimension
and K the patch size. We initialized our models from a pretrained ImageNet-21k [9] ViT model. The
spatial positional encoding ps was initialized from the pretrained 2D model and the temporal one, pt,
with zeros so that it does not have a great impact on the tokens early on during training. The models
were trained on 8 V100 GPUs using PyTorch [26].

Testing details: Unless otherwise stated, we used ViT-B/16 and T = 8 frames. We mostly used
Temporal Attention (TA) for temporal aggregation. We report accuracy results for 1 × 3 views
(1 temporal clip and 3 spatial crops) departing from the common approach of using up to 10 × 3
views [24, 14]. The 1× 3 views setting was also used in Bertasius et al. [3]. To measure the variation
between runs, we trained one of the 8–frame models 5 times. The results varied by ±0.4%.

4.2 Ablation studies

Throughout this section we study the effect of varying certain design choices and different components
of our method. Because SSv2 tends to require a more fine-grained temporal modeling, unless
otherwise specified, all results reported, in this subsection, are on the SSv2.

Table 1: Effect of local window size. To
isolate its effect from that of temporal
aggregation, the models were trained
using temporal averaging. Note, that
(Bo.) indicates that only features from
the boundaries of the local window were
used, ignoring the intermediate ones.

Variant Top-1 Top-5

tw = 0 45.2 71.4
tw = 1 62.5 87.8
tw = 2 60.5 86.4

tw = 2 (Bo.) 60.4 86.2

Effect of local window size: Table 1 shows the accuracy
of our model by varying the local window size [−tw, tw]
used in the proposed space-time mixing attention. Firstly,
we observe that the proposed model is significantly superior
to our baseline (tw = 0) which uses spatial-only attention.
Secondly, a window of tw = 1 produces the best results.
This shows that more gradual increase of the effective
window size that is attended is more beneficial compared
to more aggressive ones, i.e. the case where tw = 2.
A performance degradation for the case tw = 2 could
be attributed to boundary effects (handled by filling with
zeros) which are aggravated as tw increases. Based on
these results, we chose to use tw = 1 for the models
reported hereafter.

Effect of SA position: We explored which layers should the proposed space-time mixing attention
operation be applied to within the Transformer. Specifically, we explored the following variants:
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Table 2: Effect of (a) proposed SA position, (b) temporal aggregation and number of Temporal
Attention (TA) layers, (c) space-time mixing qkv vectors and (d) amount of mixed channels on SSv2.

(a) Effect of applying the proposed SA to certain layers.

Transform. layers Top-1 Top-5

1st half 61.7 86.5
2nd half 61.6 86.3

Half (odd. pos) 61.2 86.4
All 62.6 87.8

(b) Effect of number of TA layers. 0 corresponds to
temporal averaging.

#. TA layers Top-1 Top-5

0 (temp. avg.) 62.4 87.8
1 64.4 89.3
2 64.5 89.3
3 64.5 89.3

(c) Effect of space-time mixing. x denotes the
input token before qkv projection. Query produces
equivalent results with key and thus omitted.

x key value Top-1 Top-5

7 7 7 56.6 83.5
X 7 7 63.1 88.8
7 X 7 63.1 88.8
7 7 X 62.5 88.6
7 X X 64.4 89.3

(d) Effect of amount of mixed channels. * uses
temp. avg. aggregation.

0%* 0% 25% 50% 100%

45.2 56.6 64.3 64.4 62.5

Table 3: Comparison between TA and Summary token on SSv2 (left) and Kinetics-400 (right).

Summary TA Top-1 Top-5

7 7 62.4 87.8
X 7 63.7 88.9
X X 63.4 88.9
7 X 64.4 89.3

Summary TA Top-1 Top-5

7 7 77.8 93.7
X 7 78.7 93.7
X X 78.0 93.2
7 X 78.5 93.7

Applying it to the first L/2 layers, to the last L/2 layers, to every odd indexed layer and finally, to all
layers. As the results from Table 2a show, the exact layers within the network that self-attention is
applied to do not matter; what matters is the number of layers it is applied to. We attribute this result
to the increased temporal receptive field and cross-frame interactions.

Effect of temporal aggregation: Herein, we compare the two methods used for temporal aggrega-
tion: simple temporal averaging [36] and the proposed Temporal Attention (TA) mechanism. Given
that our model already incorporates temporal information through the proposed space-time attention,
we also explored how many TA layers are needed. As shown in Table 2b replacing temporal averaging
with one TA layer improves the Top-1 accuracy from 62.5% to 64.4%. Increasing the number of
layers further yields no additional benefits. We also report the accuracy of spatial-only attention plus
TA aggregation. In the absence of the proposed space-time mixing attention, the TA layer alone is
unable to compensate, scoring only 56.6% as shown in Table 2d. This highlights the need of having
both components in our final model. For the next two ablation studies, we therefore used 1 TA layer.

Table 5: Effect of number of tokens on
SSv2.

Variant Top-1 Top-5 FLOPs
(×109)

ViT-B/32 60.5 87.4 95
ViT-L/32 61.8 88.3 327
ViT-B/16 64.4 89.3 425

Effect of space-time mixing qkv vectors: Paramount to
our work is the proposed space-time mixing attention of
Eq. 10 which is implemented by constructing k̃l

s′,−tw:tw

and ṽl
s′,−tw:tw

efficiently via channel indexing (see Eq. 9).
Space-time mixing though can be applied in several differ-
ent ways in the model. For completeness, herein, we study
the effect of space-time mixing to various combinations for
the key, value and to the input token prior to qkv projection.
As shown in Table 2c, the combination corresponding to
our model (i.e. space-time mixing applied to the key and value) significantly outperforms all other
variants by up to 2%. This result is important as it confirms that our model, derived from the pro-
posed approximation to the local space-time attention, gives the best results when compared to other
non-well motivated variants.

Effect of amount of space-time mixing: We define as ρdh the total number of channels imported
from the adjacent frames in the local temporal window [−tw, tw] (i.e.

∑tw
t′=−tw,t6=0 d

t′

h = ρdh) when

7



Table 4: Comparison with state-of-the-art on the Kinetics-600 dataset. T× is the number of frames
used by our method.

Method Top-1 Top-5 Views FLOPs (×109)

AttentionNAS [38] 79.8 94.4 - 1,034
LGD-3D R101 [27] 81.5 95.6 10× 3 -

SlowFast R101+NL [14] 81.8 95.1 10× 3 3,480
X3D-XL [13] 81.9 95.5 10× 3 1,452

TimeSformer-HR [3] 82.4 96.0 1× 3 5,110
ViViT-L/16x2 [1] 82.5 95.6 4× 3 17,352

X-ViT (8×) (Ours) 82.5 95.4 1× 3 425
X-ViT (16×) (Ours) 84.5 96.3 1× 3 850

constructing k̃l
s′,−tw:tw

(see Section 3). Herein, we study the effect of ρ on the model’s accuracy. As
the results from Table 2d show, the optimal ρ is between 25% and 50%. Increasing ρ to 100% (i.e. all
channels are coming from adjacent frames) unsurprisingly degrades the performance as it excludes
the case t′ = t when performing the self-attention.

Effect of Summary token: Herein, we compare Temporal Attention with Summary token on SSv2
and Kinetics-400. We used both datasets for this case as they require different type of understanding:
fine-grained temporal (SSv2) and spatial content (K400). From Table 3, we conclude that the
Summary token compares favorable on Kinetics-400 but not on SSv2 showing that is more useful in
terms of capturing spatial information. Since the improvement is small, we conclude that 1 TA layer
is the best global attention-based mechanism for improving the accuracy of our method adding also
negligible computational cost.

Effect of the number of input frames: Herein, we evaluate the impact of increasing the number of
input frames T from 8 to 16 and 32. We note that, for our method, this change results in a linear
increase in complexity. As the results from Table 7 show, increasing the number of frames from 8 to
16 offers a 1.8% boost in Top-1 accuracy on SSv2. Moreover, increasing the number of frames to 32
improves the performance by a further 0.2%, offering diminishing returns. Similar behavior can be
observed on Kinetics and Epic-100 in Tables 6 and 8.

Effect of number of tokens: Herein, we vary the number of input tokens by changing the patch
size K. As the results from Table 5 show, even when the number of tokens decreases significantly
(ViT-B/32) our approach is still able to produce models that achieve satisfactory accuracy. The benefit
of that is having a model which is significantly more efficient.

Effect of the number of crops at test time. Throughout this work, at test time, we reported results
using 1 temporal and 3 spatial crops (i.e. 1× 3). This is noticeable different from the current practice
of using up to 10× 3 crops [14, 1].

To showcase the behavior of our method, herein, we test the effect of increasing the number of
crops on Kinetics-400. As the results from Fig. 3 show, increasing the number of crops beyond two
temporal views (i.e. 2 × 3), yields no additional gains. Our findings align with the ones from the
work of Bertasius et al. [3] that observes the same properties for the transformer-based architectures.

Latency and throughput considerations: While the channel shifting operation used by the proposed
space-time mixing attention is zero-FLOP, there is still a small cost associated with memory movement
operations. In order to ascertain that the induced cost does not introduce noticeable performance
degradation, we benchmarked a Vit-B/16 (8× frames) model using spatial-only attention and the
proposed one on 8 V100 GPUs and a batch size of 128. The spatial-only attention model has a
throughput of 312 frames/second while our model 304 frames/second.

4.3 Comparison to state-of-the-art

Our best model uses the proposed space-time mixing attention in all the Transformer layers and
performs temporal aggregation using a single lightweight temporal transformer layer as described
in Section 3. Unless otherwise specified, we report the results using the 1× 3 configuration for the
views (1 temporal and 3 spatial) for all datasets.
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Figure 3: Effect of the number of temporal crops at test time as measured on Kinetics 400 in terms of
Top 1 accuracy. For each temporal crop, 3 spatial clips are sampled, for a total of tcrops × 3 clips.
Notice that beyond tcrops = 2 no additional accuracy gains are observed.

Table 6: Comparison with state-of-the-art on the Kinetics-400. T× is the number of frames used by
our method.

Method Top-1 Top-5 Views FLOPs (×109)

bLVNet [12] 73.5 91.2 3 × 3 840
STM [17] 73.7 91.6 - -
TEA [23] 76.1 92.5 10 × 3 2,100

TSM R50 [24] 74.7 - 10 × 3 650
I3D NL [39] 77.7 93.3 10 × 3 10,800

CorrNet-101 [35] 79.2 - 10 × 3 6,700
ip-CSN-152 [33] 79.2 93.8 10 × 3 3,270

LGD-3D R101 [27] 79.4 94.4 - -
SlowFast 8×8 R101+NL [14] 78.7 93.5 10 × 3 3,480
SlowFast 16×8 R101+NL [14] 79.8 93.9 10 × 3 7,020

X3D-XXL [13] 80.4 94.6 10 × 3 5,823
TimeSformer-L [3] 80.7 94.7 1 × 3 7,140
ViViT-L/16x2 [3] 80.6 94.7 4 × 3 17,352

X-ViT (8×) (Ours) 78.5 93.7 1 × 3 425
X-ViT (16×) (Ours) 80.2 94.7 1 × 3 850

Table 7: Comparison with state-of-the-art on SSv2. T× is the number of frames used by our method.
* - denotes models pretrained on Kinetics-600.

Method Top-1 Top-5 Views FLOPs (×109)

TRN [45] 48.8 77.6 - -
SlowFast+multigrid [41] 61.7 - 1× 3 -

TimeSformer-L [3] 62.4 - 1 × 3 7,140
TSM R50 [24] 63.3 88.5 2 × 3 -

STM [17] 64.2 89.8 - -
MSNet [22] 64.7 89.4 - -
TEA [23] 65.1 - - -

ViViT-L/16x2 [3] 65.4 89.8 4 × 3 11,892

X-ViT (8×) (Ours) 64.4 89.3 1 × 3 425
X-ViT (16×) (Ours) 66.2 90.6 1 × 3 850

X-ViT* (16×) (Ours) 67.2 90.8 1 × 3 850
X-ViT (32×) (Ours) 66.4 90.7 1 × 3 1,270
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On Kinetics-400, we match the current state-of-the-art results while being significantly faster than the
next two best recently/concurrently proposed methods that also use Transformer-based architectures:
20× faster than ViVit [1] and 8× than TimeSformer-L [3]. Note that both models from [1, 3] and
ours were initialized from a ViT model pretrained on ImageNet-21k [9] and take as input frames
at a resolution of 224× 224px. Similarly, on Kinetics-600 we set a new state-of-the-art result. See
Table 4.

On SSv2 we match and surpass the current state-of-the-art, especially in terms of Top-5 accuracy
(ours: 90.8% vs ViViT: 89.8% [1]) using models that are 14× (16 frames) and 9× (32 frames) faster.

Finally, we observe similar outcomes on Epic-100 where we set a new state-of-the-art, showing
particularly large improvements especially for “Verb” accuracy, while again being more efficient.

5 Conclusions

Table 8: Comparison with state-of-the-art on Epic-
100. T× is the #frames used by our method. Re-
sults for other methods are taken from [1].

Method Action Verb Noun

TSN [36] 33.2 60.2 46.0
TRN [45] 35.3 65.9 45.4
TBN [20] 36.7 66.0 47.2
TSM [20] 38.3 67.9 49.0

SlowFast [14] 38.5 65.6 50.0
ViViT-L/16x2 [1] 44.0 66.4 56.8

X-ViT (8×) (Ours) 41.5 66.7 53.3
X-ViT (16×) (Ours) 44.3 68.7 56.4

We presented a novel approximation to the full
space-time attention that is amenable to an ef-
ficient implementation and applied it to video
recognition. Our approximation has the same
computational cost as spatial-only attention yet
the resulting Video Transformer model was
shown to be significantly more efficient than re-
cently/concurrently proposed Video Transform-
ers [3, 1]. By no means this paper proposes
a complete solution to video recognition using
Video Transformers. Future efforts could in-
clude combining our approaches with other ar-
chitectures than the standard ViT, removing the
dependency on pre-trained models and applying
the model to other video-related tasks like de-
tection and segmentation. Finally, further research is required for deploying our models on low power
devices.
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