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Abstract

This paper sets out to solve the following problem: How
can we turn a generative video captioning model into an
open-world video/action classification model? Video cap-
tioning models can naturally produce open-ended free-form
descriptions of a given video which, however, might not be
discriminative enough for video/action recognition. Unfor-
tunately, when fine-tuned to auto-regress the class names
directly, video captioning models overfit the base classes
losing their open-world zero-shot capabilities. To alleviate
base class overfitting, in this work, we propose to use rein-
forcement learning to enforce the output of the video cap-
tioning model to be more class-level discriminative. Specif-
ically, we propose ReGen, a novel reinforcement learning
based framework with a three-fold objective and reward
functions: (1) a class-level discrimination reward that en-
forces the generated caption to be correctly classified into
the corresponding action class, (2) a CLIP reward that en-
courages the generated caption to continue to be descriptive
of the input video (i.e. video-specific), and (3) a grammar
reward that preserves the grammatical correctness of the
caption. We show that ReGen can train a model to produce
captions that are: discriminative, video-specific and gram-
matically correct. Importantly, when evaluated on standard
benchmarks for zero- and few-shot action classification, Re-
Gen significantly outperforms the previous state-of-the-art.

1. Introduction

Open-world or zero-shot video recognition is concerned
with the problem of recognizing at test time, unseen dur-
ing training, video/action classes. For example, during
training, an open-world video recognition model might be
trained to classify dancing_blues or dancing-latin
but, during test time, it might be required to perform classi-
fication over new categories, not seen during training, like
dancing_tango. Another application of open world-
recognition is when a model is trained on dataset A with
class taxonomy C 4 and then it is applied directly (i.e. with-
out re-training) on a different dataset B with a different (i.e.
non- or partially-overlapping) class taxonomy Cp.

A video captioning model uses (by construction) a gener-
ative language model, conditioned on features produced by
a video backbone, to generate a human-interpretable free-
form textual description of the video which, in principle,
can be associated to any video/action class. Hence, a cap-
tioning model can be potentially used for open-world recog-
nition. However, in practice, the generated captions are not
discriminative enough for video/action recognition. In this
paper, our goal is to turn a generative captioning model
into a highly-accurate open-world video/action classifica-
tion model which, at the same time, maintains its ability to
generate video-specific grammatically correct captions.

To our knowledge, the only method that trains a genera-
tive captioning model for open-world video/action recog-
nition is the recently proposed REST [8]. Therein, the
authors first showed that directly fine-tuning a captioning
model to auto-regress the action class names results in base
class overfitting and severely hurts zero-shot generalizabil-
ity. While REST addresses, to some extent, this problem
by utilizing an unsupervised adaptation framework, it com-
pletely discards class information during training. As a re-
sult, the trained model might still not be very discriminative
for open-world video classification.

Our main goal in this work is to address this important
limitation of [8] by enabling the integration of class infor-
mation into the training of a generative video captioning
model. To this end, we propose ReGen, a newly introduced
training framework based on Reinforcement Learning (RL)
and 3 appropriate rewards to train a Generative model so
that its output caption satisfies 3 key requirements: (1) be
class discriminative avoiding base overfitting, (2) maintain
the video-specific granularity of the generated text, and (3)
maintain the grammatical correctness of the generated text.
Different to video captioning, ReGen does not use captions
to train the model, only class label information. To this end,

in this paper, we make the following contributions:
* To avoid base class overfitting, we avoid training with

a standard language modelling loss and, instead, in-
troduce RL and CLS-R, a class discrimination reward
computed from class names only, that enforces the gen-
erated caption for a given video to be correctly classi-
fied into the corresponding ground truth class.

* As the optimization of CLS—R alone results in a model
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whose output degenerates towards a generic class-
specific caption, we introduce a CLIP-based reward,
CLIP-R, that encourages the generated caption to
continue to be descriptive of the video content.

* To ensure that the generated caption is grammatically-
correct, we propose a grammar reward, GRAMMAR-R,
that maintains the correctness of the produced caption.

* When evaluated on standard benchmarks for zero-shot
and few-shot action classification, ReGen outperforms
the previous state-of-the-art by a large margin. We also
show very competitive results for zero-shot captioning.

2. Related work

Zero-shot Action Recognition: A number of methods aim
to learn to align video representations with the word em-
beddings describing the action class names. The works
of [62, 21, 21] learn to align features from frozen video
networks to Word2Vec [38] class name embeddings. Other
works propose to directly learn the video networks to pro-
duce features aligned with Word2Vec embeddings, repre-
senting the composition of scenes [7] or the class names [0].
In [37], an optimal transport assignment re-adjusts the pro-
totype embeddings for the text classes according to the test
video embeddings, creating a label space distribution at test
time. The work of [16] proposes a method that separately
models objects and their interactions. The work of [36]
learns a Knowledge Graph to convert the word embeddings
for objects/nouns into classification weights, and uses this
to create the weights for unseen classes.

Recently, a number of discriminative methods based on
contrastive learning have been proposed. X-CLIP [39]
adapts CLIP with a video-specific cross-attention module
producing an enhanced class embedding aligned with the
video features. In [19] a transformer is proposed trained to
predict nouns and actions from masked text by attending to
the video features. The work of [30] proposes a joint en-
coder for the video and text embeddings and to express the
embeddings of the unseen classes as a weighted combina-
tion of the seen ones. An inherent problem with discrimi-
native methods is that they are trained in a fully supervised
manner which is prone to base class overfitting.

As an alternative to discriminative methods, REST [&]
introduces a new class of zero-shot models based on gen-
erative video captioning where the goal is to use the gen-
erated caption for video/action classification. To train
such a model, REST proposes an unsupervised adapta-
tion framework, based on retrieval-augmented self-training
with pseudo-captions, which avoids base class overfitting.
However, REST completely discards class label informa-
tion which might be available during training.

ReGen combines the best of both worlds (discriminative
and generative): it builds upon REST inheriting the advan-

tages of a generative approach (e.g. fine-grained & human
interpretable output, less base class overfitting) but also,
through the proposed rewards for reinforcement learning,
it enables the integration of class information for training
of a significantly more discriminative (compared to REST)
model for open-world video classification.

RL for image captioning has been primarily motivated by
the mismatch between the cross entropy loss used to train
an autoregressive model and the captioning metrics used
for evaluation, and the gap induced by using ground-truth
tokens at training time to predict the next word while the
model uses its own predictions at test time. Two funda-
mental differences with our work are that (1) the goal of
RL-based image captioning is to improve the quality of the
generated caption while, in our work, we used RL to im-
prove the discriminative properties of the caption for open-
world video/action recognition, and (2) ReGen does not use
captions for training but only the base classes’ names.

MIXER [45] pioneered the use of REINFORCE [56] to
learn a generative model in an annealing strategy whereby
the influence of the rewards gradually overtakes that of the
cross-entropy loss . Follow-up works proposed different op-
tions for the critic [59, 32] where the rewards were defined
at a sentence-level instead of a word-level. The work of
[46] proposes the self-critical sequence training as a form
of REINFORCE that uses its own test-time inference al-
gorithm to normalize the rewards. The work of [12] uses
the transformer [50] and formulates the objective in a self-
critic way where the reward is the CIDEr [51] score of the
beam-searched [3] sequence with the baseline defined as the
average reward. The success of [40, 3] settled the standard
practice of firstly training a model using a cross-entropy loss
and then fine-tuning it using RL [35, 24, 61, 27, 17], an ap-
proach also adopted in our work where the initial captioning
model is trained using REST [&].

More recently, in [23], CLIP is proposed as a metric to
evaluate captions. The work of [1 1] proposes to use such a
metric to replace the CIDEr score reward for finetuning an
image captioning model with RL. We also used a similar re-
ward but our motivation is different: we use it to prevent our
model’s output from collapsing into a generic class-specific
caption which is not descriptive of the input video.

3. Method
3.1. Goal & training setting

ReGen’s goal: Our goal is to train a discriminative video
captioning model whose output caption w can be used for
classifying the given video v in terms of a set of Cy novel
action/video classes, i.e. classes not seen during training.
To this end, ReGen seeks to satisfy three requirements: (1)
train a discriminative captioning model where the generated
caption can be used for zero-shot video/action recognition,
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Figure 1: ReGen overview: Starting from a pre-trained generative video captioning model, ReGen fine-tunes it on a labelled
video/action recognition dataset using RL with the goal of generating discriminative captions for open-world video/action
recognition. The caption is tuned to be discriminative using a classification-based reward (CLS—R) which is a cross-entropy
loss between CLIP text embeddings of the generated caption and the class names. Moreover, to prevent the model from
producing generic class-specific captions which are not descriptive of the input video, a CLIP-based reward is proposed
(CLIP-R). Finally, to ensure the grammatical correctness of the caption, we propose a grammar reward (GRAMMAR-R).
Note that ReGen uses only class labels for RL-based fine-tuning (i.e. no captions are used for training at all).

i.e. the caption should be discriminative; (2) maintain or
even enhance the video-specific granularity of the generated
caption, i.e. the caption should be video-specific; (3) train-
ing should not compromise the grammatical correctness of
the generated caption, i.e. the caption should be grammat-
ically correct. In ReGen, each of these requirements is ad-
dressed with a dedicated loss as explained in Sec. 3.2. Fig. 1
shows an overview of our training framework.

Model architecture: Our model is a generative one
pe(w|v) consisting of a video encoder g,,(.) and an autore-
gressive text decoder ¢:(.). We used the same generative
architecture for video captioning as in REST which, in turn,
adapts recently proposed image-based auto-regressive mod-
els with minimal changes in order to accommodate the use
of temporal information. In particular, our model is based
on GIT [52], but we note that ReGen can be used to train
other architectures, too (e.g. BLIP [29]). The vision en-
coder g,(.) is a ViT [15], the output of which is flattened
and projected using a linear layer and a layer norm to match
the dimensionality of the text decoder. When processing
multiple frames, a temporal embedding is added to the vi-
sion features corresponding to each frame. The features
are simply averaged across the time dimension thereafter.
The text decoder g;(.) follows BERT [13] taking as input
the concatenation of the flattened vision features and the
text embeddings, separated by the [BOS] token. At test

time, it auto-regressively generates a caption until [EOS]
is reached. Finally, to use the generated caption for video
classification, we compute a text embedding from it using
CLIP’s text encoder and, similarly, a text embedding for all
class names in the given test dataset. Then, the predicted
class is the one corresponding to the maximum inner prod-
uct between the caption and the class name embeddings.

Training setting: As usual in open-world (i.e. zero-shot)
recognition, the model is trained on an action/video recog-
nition dataset of Cp base classes where Cp | JCn = ). The
training dataset consists of NV video-label pairs {v;, ¢;} i =
1,..., N. Note that we do not use ground truth captions
for training (only the class names) but it is assumed that our
model is already pre-trained to output a caption . Specifi-
cally, our model has been pre-trained with REST [8] which
adapts a generative image-based V&L model (GIT [52] or
BLIP [29]) into a video captioner in an unsupervised man-
ner i.e. without using any class labels at all. Under this
setting, our training framework, ReGen, uses reinforcement
learning to further train the initial model (pre-trained with
REST) by enabling the integration of class label informa-
tion to meet requirements (1)-(3) mentioned above.

IThis makes our approach quite different to previous works which use
reinforcement learning for video captioning.
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3.2. ReGen

To meet the 3 key requirements introduced above, i.e. the
generated caption should be (1) discriminative, (2) video-
specific, and (3) grammatically correct), we introduce three
respective rewards detailed in Sections 3.2.1, 3.2.2 and
3.2.3 which are used to train our model using reinforcement
learning.

3.2.1 Classification Reward CLS-R

Training a video captioning model to directly auto-
regress the class names with a standard language modelling
loss (i.e. a cross entropy loss) leads to severe base class
overfitting with the model completely losing its zero-shot
generalization capabilities [8]. This is in contrast to the
contrastive-based CLIP-adaptation approaches which tend
to maintain decent zero-shot generalization properties [39].

To alleviate the aforementioned limitation and encour-
age class-level discrimination, we propose a classification-
based reward (CLS-R). Given our generative captioning
model pg(w|v), the closest class name to the generated cap-
tion w is found by measuring the cosine similarity between
w and the class names in the embedding space of a pre-
trained CLIP text encoder. Specifically, let t = CLIPp(w)
be the embedding obtained by feeding w to the CLIP’s text
encoder. Moreover, let t. = CLIP7(q.),c = {1,...,C}
be the CLIP text embedding corresponding to the name g,
of the c-th class (in practice, we used the text encoder corre-
sponding to the ViT-B/16 variant of CLIP). Then, the prob-
ability over class labels is given by:
o) = (oS t)/T)

Y eeq exp(cos(te, t)/T)
where 7 is a temperature factor and cos the cosine simi-
larity. For a given video v, we then define the classification
reward CLS—R to be equal to the cross-entropy loss:

(D

C
cLS-R(w) = — Y _logp(c|w)ye. 2)
c=1

The model py(.) is then optimized using REINFORCE with
a self-critique baseline [46]. Specifically, we approximate
the gradient of the expected reward for the generated cap-
tion w by normalising the reward of the beam-searched cap-
tion wy, with that of the greedy decoded one wy:

VoEynpywlo)y = (r(ws) — r(wg))Veps(ws|v), (3)
where r(w) = CLS-R(w).
Why CLS-R is good for open-world recognition? Firstly,

training with CL.S—R and RL enhances the model’s discrim-
inability. CLS-R reward evaluates the caption globally,
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Figure 2: Change in word diversity per class between Re-
Gen and REST [8]. Each bar represents a novel class. A
red bar indicate a positive increase (measure in %), while a
black bar a decrease. Notice that, for the vast majority of
classes, ReGen significantly increases the word diversity.

text2image text2text

(a) Model trained with ReGen. The generated caption is “a woman
putting her glasses on her face”.

text2image text2text

(b) Model trained with REST. The generated caption is “a black back-
ground with the words, you can download this video”.
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(c) Model trained with directly auto-regressing the class names. The
generated caption is “fixing hair”.

Figure 3: Comparison of text-to-image and text-to-text at-
tention maps of a model trained with (a) ReGen, (b) REST
and (c) directly auto-regressing the class names. The input
video’s ground truth class is “adjusting glasses” which is a
class not seen during training. Our approach in (a) attends
mostly to the input video (the text-to-image attention part)
as opposed to cases (b) or (c). The later concentrates its
attention mostly on the text part (text-to-text region of the
plot), a symptom of strong base class overfitting. Only Re-
Gen’s output correlates with the correct class. Best viewed
in colour.

measuring how well it is mapped to the correct class and
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how distinguishable it is from the other potential classes.
That is, the decision of whether a caption describes cor-
rectly a given class is taken holistically, based on the entire
caption, and not locally as enforced by a fully supervised
setting. Importantly, changing a single token will have a
small effect on the overall supervised loss (as its value is
the sum or average over the entire caption), but may change
the global meaning entirely.

Secondly, training with CLS-R reward enhances the
model’s zero-shot generalizability. = During each RL
episode, we explore, in the neighbourhood of the current
prediction, a set of trajectories, sampled stochastically with
beam search, that go beyond the wording generated by a
model trained with a language modelling loss. In this pro-
cess, new words/text, previously unexplored during the next
token prediction-based learning, emerge. By not enforcing
a particular output (as for example with a standard cross-
entropy loss), we allow the model to explore new words and
sentence constructions, while avoiding the overfitting to a
predefined set of classes or captions 2. In Fig. 2, we show
the relative increase in number of unique words per class
used by a model trained with ReGen. Compared with the
REST baseline, our predictions are generally between 20
and 100% more diverse, with the newly discovered words
not learned by any explicit supervision.

As aresult of training with CLS—R, a model trained with
ReGen is relying more on the input video and less on the
previously generated text to complete the caption genera-
tion process. This can be observed in Fig. 3 where the
text-to-image and text-to-text attention maps of 3 models
are compared. The output at the top figure is from a model
trained with ReGen which clearly attends more to the video
and less to the text to generate the caption. The output at
the middle figure is from a model trained with REST which
relies more on the text (observe the high score for some text-
to-text attention values) thus “cheating” to some extent. Fi-
nally, the output at the bottom figure is from a model trained
to directly auto-regress the class name which relies heavily
on text and suffers from severe base class overfitting.

3.2.2 Video-specific reward CLIP-R

While training with the CLS—R reward encourages class-
discrimination, the output caption may degenerate towards
a generic textual description of the class i.e. stop being
descriptive of each individual input video. For example,
all videos belonging to playing football class may output
the same caption, for example, two persons playing foot-
ball despite the number of players changing from one sam-

2Qverfitting to a set of captions occurs in REST where the model is
trained for each video to generate a caption sampled from a small set of
potential pseudo-captions

ple to another. To address this problem, we propose to en-
force that the video and the generated caption are similar in
CLIP’s joint embedding space. We define our video-caption
CLIP-Rreward as:

CLIP-R(v,w) = max(cos(f,t),0), 4)

where f = L S°7 | cL.1P;(v;) and F the number of frames
of v. The gradient of the expected reward is calculated by
plugging Eq. 4 into Eq. 3.

Note that, very recently, [ 1] also proposed a clip-based
reward with the intention of replacing CIDEr optimiza-
tion for generating more accurate and fine-grained image
captions. In contrast, our motivation is different: we use
CLIP-R to prevent our model’s output from collapsing into
a degenerate class-specific caption.

3.2.3 Grammar Reward GRAMMAR-R

The previously proposed rewards may result in captions
that are grammatically incorrect (e.g. incorrect word order-
ing, repeated word(s), etc.). Specifically, CLS-R is only
sensitive to the discriminability of a caption with respect to
the given classes and CLIP-R does not encourage gram-
matically coherent text as the CLIP text encoder is not sen-
sitive to grammar or word ordering [58]. To address this
limitation, we propose the following grammar rewards:
LM-based: Herein, the goal is to leverage the per-token
log-likelihood of a pretrained LM as a proxy of assessing
the quality of the generated caption by using its value as a
reward. For example, as repeated or swapped words are un-
likely to occur in natural language, they tend to have lower
scores, guiding the model accordingly.

Given the sequence of tokens U = {u1,...,uy|} cor-
responding to a given caption w, we compute the log-
likelihood score by replacing the j-th token with [MASK]:
U/ ={uy,...,uj_1, IMASK], ujq1,...,upy|} as:

U]

1
GRAMMAR-R 3 (w) = i > log Ly(u;[U,5),  (5)
j=1

where Ly is a pre-trained masked LM [13, 48]. Note that
the score is normalized by its length to avoid biasing the
predicted text towards shorter sentences. While a score
could be computed in a similar manner in one go using auto-
regressive models, since our text decoder uses a BERT tok-
enizer, the proposed approach allows us to provide a dense
reward on a token-by-token basis simply by removing the
sum from Eq. 5. We experimented with multiple models
which we ablate in Sec. 5. Note that, depending on the data
the LM was pretrained on, such a loss can also induce a
style change to the generated caption.

Discriminator-based: Instead of relying on a pre-trained
LM, herein, we train a grammar discriminator d(.) to assess
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whether a given caption is grammatically correct and coher-
ent. The training data is created by perturbing the pseudo-
captions from [8] with random errors: swapping, shuffling,
repeating, inserting or removing tokens and groups of to-
kens. The discriminator is trained using a binary cross
entropy loss, where 1 indicates a correct sample and O a
wrong one. To allow for faster convergence, we initialize
the model from CLIP’s text encoder. The network is fine-
tuned for 10 epochs using AdamW, a batch size of 256, and
a learning rate of le — 4. In this case:

GRAMMAR-Rg4(w) = d(w). (6)

In both cases, the gradient of the expected reward is approx-
imated by plugging Eq. 5 or Eq. 6 into Eq. 3. In practice,
we employ only one of the two variants proposed above.

3.2.4 Total Reward

The total reward is: 7itq;t = AcrLs—r - CLS-R +
Aernip—Rr - CLIP-R 4+ AGRAMMAR—R - GRAMMAR-R,

where Acrs—r, AcLrp—Rr, A\GRAMMAR—R are the corre-
sponding reward weights.

4. Experimental setting

Datasets: Unless otherwise stated, we trained our mod-
els on the Kinetics-400 [25] dataset and evaluated them for
zero-shot action recognition on the standard benchmarks of
HMDB-51 [26] and UCF-101 [49]. Moreover, we eval-
uated on Kinetics-600 [9] using the (three) splits defined
in [10]. Each split consists of 160 novel classes (not present
in Kinetics-400) covering 220 classes in total across the 3
splits. To ensure no overlap, the classes were renamed from
600 to 620. We refer to this evaluation subset as Kinetics-
220 in the zero-shot setting and as 620 in the generalized
zero-shot one. We also performed few-shot recognition ex-
periments on HMDB-51 and UCF-101. Finally, we con-
ducted a zero-shot captioning experiment on VaTeX [55].
Models used and training setting: To show that ReGen’s
training framework is architecture agnostic, we used two
architectures for the video captioning model, one based on
BLIP [29] and one on GIT [52]. Following standard prac-
tices [46, 3], the initial captioning models were firstly pre-
trained with a language modelling loss using REST [&] and
then finetuned with RL using the proposed ReGen.
Training hyperparameters: We trained all of our models
for 10 epochs using AdamW [34], with a learning rate of
le — 7, a weight decay of 0.001 and a batch size of 8. Un-
less otherwise stated A\crs—r = 1.0, A\errp—r = 5.0,
AgraMMAR—Rr = 0.2. For few-shot training, we followed
the hyper parameters from [8]. We list all augmentations
and hyper-parameters in the supplementary material. All of
our models and training code were implemented using Py-
Torch [40].

5. Ablation studies

Effect of each reward function in ReGen: Herein we
evaluate the effect of each reward function used in ReGen
on the accuracy and behavior of the model. We report re-
sults for each component in Table | for zero-shot action
recognition (HMDB-51, UCF-101 and Kinetics-220) and
zero-shot video captioning (VaTeX). The later experiment
is used here to assess the quality of the generated caption.
As it can be observed, applying the proposed CLS—R reward
alone results in models that exhibit strong zero-shot recog-
nition ability (2nd row), but degraded text quality: The text
is often incoherent with repetition of words or hallucinated
class-relevant details that may not be present in the video.
The addition of CLIP-R reward further boosts the discrim-
ination ability (3rd row) with the model now learning to fo-
cus on the input video itself. However, as the CLIP text en-
coder is not sensitive to the word ordering, the quality of the
generated caption remains low. This illustrates the necessity
of the proposed CLS-Grammar reward which significantly
boosts the generated caption’s quality. It is worth noting that
the combination of CLS—-R with CLS-Grammar without
including CLIP-R is still prone to generating captions that
may not reflect the visual content, hence the lower CIDEr
score in this case. Finally, the model trained using all 3 re-
ward functions (last row) offers the best trade-off between
classification accuracy and caption quality, showcasing the
importance of using the combination of proposed rewards.

Effect of GRAMMAR-R reward used: In this section, we (a)
compare the different variants of the proposed GRAMMAR-R
reward (LM-based vs. discriminator-based; see Sec. 3.2.3),
and (b) analyze the impact of the LM architecture used on
the performance. As the results from Table 2 show, the
discriminator-based grammar correctness reward produces
sentences with a higher CIDEr score but of lower discrim-
inability. This can be explained by the fact that it was
trained on the pseudo-labels produced by REST, hence it
tends to maintain the initial sentence structure and may pe-
nalize slightly new words. In contrast, the LM was trained
on large corpora of text, and are less likely to penalize
new tokens, but will generally change the style of the text.
In terms of the LM architectures used for GRAMMAR-R,
we tested the following BERT [13] variants and deriva-
tives: DistillBERT-Base [48], BERT-Base, BERT-Large
and DeBERTa-Base [22]. As shown in Table 3, all mod-
els perform similarly, with larger models having an edge.

Comparison with REST and effect of architecture:
Herein, we report the results obtained by using two video
captioning models for ReGen based on BLIP [29] and
GIT [52] architectures. The first one is based on cross-
attention between visual and text features, while the second
one concatenates the vision and text tokens and performs
self-attention. In both cases, we compare against the REST
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CLS-R | CLIP-R | GRAMMAR-R | K220 | HMDB-51 | UCF-101 | VaTeX
X X X 29.6 49.9 71.6 39.1
v X X 38.6 55.0 77.9 28.1
v v X 389 55.5 78.5 29.3
v X v 37.2 54.1 76.2 334
v v v 38.2 55.1 76.4 40.5

Table 1: Impact of each reward in ReGen on zero-shot classification on HMDB-51, UCF-101 and Kinetics-220 (1-vs-620
setting) in terms of Top-1 (%) accuracy, and on zero-shot captioning on VaTeX in terms of CIDEr. The latter experiment

reflects the quality of the generated caption.

GRAMMAR-R K220 | HDMB-51 | UCF-101 | VaTeX
M 38.2 55.1 76.4 40.5
Discriminator | 35.1 55.0 75.0 46.1

Table 2: Impact of the GRAMMAR-R variant on zero-shot
classification on HMDB-51, UCF-101 and Kinetics-220 (1-
vs-620 setting) in terms of Top-1 (%) accuracy, and on zero-
shot captioning on VaTeX in terms of CIDEr. We compare
the two versions, LM-based vs discriminator-based, pro-
posed in Sec. 3.2.3

Model K220 | HDMB-51 | UCF-101 | VaTeX
DistillBERT-B [48] | 37.4 53.6 74.4 382
BERT-B [13] 37.5 53.6 74.6 38.3
BERT-L [13] 38.2 55.1 76.4 40.5
DeBERTa-B [22] 37.6 55.3 76.7 39.2

Table 3: Impact of the LM used for GRAMMAR-R on zero-
shot classification on HMDB-51, UCF-101 and Kinetics-
220 (1-vs-620 setting) in terms of Top-1 (%) accuracy, and
on zero-shot captioning on VaTeX in terms of CIDEr.

Method Arch. | K220 | HDMB-51 | UCF-101
REST [8] BLIP 29.51 49.7 69.1
ReGen (Ours) 37.6 54.5 75.1
REST [8] GIT 29.6 499 71.6
ReGen (Ours) 38.2 55.1 76.4

Table 4: Impact of the architecture used in ReGen
on zero-shot classification on HMDB-51, UCF-101 and
Kinetics-220 (1-vs-620) in terms of Top-1 (%) accuracy.

baseline which is used to provide the initial captioning mod-
els. As the results from Table 4 show, ReGen offers large
gains over REST for both architectures.

6. Comparison with state-of-the-art

In this section, we compare ReGen against the state-
of-the-art on zero-shot action recognition, few-shot action
recognition, and zero-shot video captioning. Unless oth-
erwise stated, all methods reported (including ours) were
trained on Kinetics-400 ensuring a fair comparison.
Zero-shot action recognition: Herein, we compare ReGen
against the state-of-the-art for zero-shot action recognition
on UCF-101, HMDB-51 and Kinetics-220. On UCF-101

Method | HMDB-51 | UCF-101
Discriminative approaches
MTE [57] 19.7+16 | 15.8+1.3
ASR [54] 21.8+£09 | 244+1.0
ZSECOC [42] 226+£1.2 15.1+ 1.7
UR [62] 244+£16 | 17.5+1.6
E2E [18] 32.7 48
TS-GCN [06] 23.2+3.0 | 3424+3.1
ER-ZSAR [10] 353+46 | 51.8+29
CLIP [44] 46.2 73.0
MUFI [43] 31.0 60.9
ActionCLIP [53] 40.8+54 | 58.3+£34
ClipBert [28] 21.4+1.0 | 27.8+0.8
Frozen [4] 27.8+0.3 459+ 1.3
ViSET-96 [14] 40.2 68.3
BridgeFormer [19] | 37.7+1.2 53.1+ 14
AURL [41] 40.4 60.9
ResT_101 [30] 41.14+3.7 | 58.7+£3.3
X-CLIP [39] 44.6 £5.2 72+ 2.3
X-Florence [39] 4844+49 | 73.2+4.2
Generative approaches
REST [8] 49.7+£1.14 | 69.14+ 0.62
ReGen (Ours) 55.1+04 | 76.4+0.2

Table 5: Zero-shot classification results on HMDB-51 and
UCF-101 in terms of Top-1 (%) accuracy.

and HMDB-51, as the results from Table 5 show, we out-
perform all prior methods by a large margin. In particu-
lar, on HMDB-51, we improve in absolute terms upon the
previous best result of REST [8] by 5.4% while, on UCF-
101, upon X-Florence [39] by 3.3%. On Kinetics-220, for
the standard 1-vs-160 setting (i.e. classify in terms of 160
novel classes), we outperform REST by more than 10%, be-
ing second overall only to the recent discriminative method
of [39]. As Table 7 shows, once all 620 class names are
considered, i.e. once the base class names are included in
the evaluation, (1-vs-620 setting; also known as general-
ized zero-shot setting), ReGen, outperforms X-CLIP [39]
by more than 20%. This suggests that the superiority of X-
CLIP on the 1-vs-160 setting can be considered “artificial”
and that X-CLIP is prone to base class overfitting. For qual-
itative examples see Fig. 4 where we compare our approach
with REST [8].
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HMDB-51 UCF-101
Method 2 [ 4 [ 8 [16] 2] 4] 816
Discriminative approaches
TSM [31] 17.5 | 20.9 | 184 | 31.0 | 25.3 | 47.0 | 64.4 | 61.0
TimeSformer [5] | 19.6 | 40.6 | 49.4 | 554 | 48.5 | 75.6 | 83.7 | 89.4
Swin-B [33] 209 | 41.3 | 479 | 56.1 | 53.3 | 74.1 | 85.8 | 88.7
X-CLIP [39] 530 | 573 | 62.8 | 640 | 764 | 834 | 883 | 914
X-Florence [39] | 51.6 | 57.8 | 64.1 | 64.2 | 84.0 | 88.5 | 92.5 | 94.8
Generative approaches
REST [&] 540 | 59.1 | 62.1 | 64.0 | 88.2 | 90.2 | 92.6 | 93.5
ReGen (Ours) 61.8 | 67.7 | 70.7 | 72.5 | 88.5 | 91.4 | 93.9 | 94.9

Table 6: Few-shot classification results on HMDB-51 and UCF-101 in terms of Top-1 (%) accuracy.

Method ‘ Top-1 ‘ Top-5
Discriminative approaches
SJE [1] 223+£06 | 482+04
ESZSL [47] 229+1.2 | 48.3+£0.8
DEM [60] 23.6+06 | 49.5+0.4
GCN [20] 22.3+0.6 | 49.7+0.6
ER-ZSAR [10] 421414 | 73.1£0.3
X-CLIP [39] 65.2+04 | 86.1+0.8
X-Florence [39] | 68.8 0.9 | 88.4+ 0.6
Generative approaches

REST [8] 51.7£1.1 | 75.2+£04
ReGen (Ours) 62.0+0.8 | 83.8+0.4

Table 7: Zero-shot classification results on Kinetics-220
(1-vs-160 setting).

Method | Top-1 \
Discriminative approaches
X-CLIP [39] [ 14.76 £0.51 | 60.93 £0.25
Generative approaches
29.51£0.71 | 56.12+0.37
38.1+£0.5 66.8+0.1

Top-5

REST [§&]
ReGen (Ours)

Table 8: Generalized zero-shot classification results on
Kinetics-220 (1-vs-620 setting).

Few-shot action recognition: We also adapted a model
trained by ReGen for few-shot action recognition on UCF-
101 and HMDB-51. Following the existing protocols, we
train and test for both datasets using the 3 available splits.
Table 6 shows that our approach significantly outperforms
all prior works across different number of shots ({2,4,8,16})
setting a new state-of-the-art for both datasets, improving
by 6.8-8.6% on HDMB-51 and by 0.3-1.4% on UCF-101.

Zero-shot captioning: Our main aim in this paper is to
train a strong zero-shot action recognition model. How-
ever, as our approach produces a caption, we conducted an
experiment to assess its performance for zero-shot video
captioning, too. As the results from Table 9 show, our

approach matches the considerably bigger Flamingo mod-
els [2] (Flamingo-80B is for example more than 160X big-
ger), trained using more than 2B images and 24M videos.

Method CIDEr
Flamingo-3B [2] 40.1
Flamingo-8B [?] 39.5
Flamingo-80B [2] 46.7
REST (GIT-arch) [8]* 39.1
Ours (w. LM) 40.5
Ours (w. Discriminator) | 46.1

Table 9: Zero-shot video captioning results on VaTeX in
terms of CIDEr score. * - re-implementation

7. Conclusions

We introduced, ReGen, a framework for training a dis-
criminative captioning model for zero-shot video/action
recognition. Our work, introduces a novel RL solution
that alleviates base class overfitting using a 3-fold reward
function: (a) a class discrimination reward, CLS—R, that
enforces the generated caption to be correctly classified,
(b) a CLIP-based reward, CLIP-R than encourages the
caption to be video-specific, and (c) a grammar reward,
GRAMMAR-R, that preserves the grammatical correctness of
the caption. We show that the proposed RL solution is ef-
fective (and necessary) for both mitigating base-class over-
fitting and improving the discriminability of the generated
caption. Moreover, ReGen sets a new state-of-the-art for
both zero-shot and few-shot action recognition. Hence, we
conclude that a good generative zero-shot video classifier
should be rewarded.

References

[1] Zeynep Akata, Scott Reed, Daniel Walter, Honglak Lee, and
Bernt Schiele. Evaluation of output embeddings for fine-

13530



Label: playing ocarina

REST: a todd playing with a harmonica
ReGen (Ours): a man singing and playing a harmonica in the middle of the screen

Label: trimming shrubs

REST: a man using a spray gun to paint a hedge
ReGen (Ours): a man trimming topiary bushes in the garden

Label: laying concrete
REST: a man pouring concrete into a pool
ReGen (Ours): a construction worker pouring concrete into the pit of a concrete foundation

Figure 4: Examples of captions produced by our approach and REST for a set of videos from Kinetics-220 (i.e. zero-shot
setting).

(2]

(3]

(4]

(5]

(6]

(7]

grained image classification. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2015. 8

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine
Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katie Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. Advances on Neural
Information Processing Systems, 2022. 8

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
Bottom-up and top-down attention for image captioning and
visual question answering. In I[EEE Conference on Computer
Vision and Pattern Recognition, 2018. 2, 6

Max Bain, Arsha Nagrani, Giil Varol, and Andrew Zisser-
man. Frozen in time: A joint video and image encoder for
end-to-end retrieval. In IEEE International Conference on
Computer Vision, 2021. 7

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understanding?
In International Conference on Machine Learning, 2021. 8
Biagio Brattoli, Joseph Tighe, Fedor Zhdanov, Pietro Per-
ona, and Krzysztof Chalupka. Rethinking zero-shot video
classification: End-to-end training for realistic applications.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2020. 2,7

Carlo Bretti and Pascal Mettes. Zero-shot action recognition
from diverse object-scene compositions. British Machine Vi-

[8

—

[9

—

[10]

(11]

(12]

(13]

(14]

13531

sion Conference, 2021. 2

Adrian Bulat, Enrique Sanchez, Brais Martinez, and Geor-
gios Tzimiropoulos. REST: REtrieve & Self-Train for gen-
erative action recognition. arXiv preprint arXiv:2209.15000,
2022.1,2,3,4,6,7,8

Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe
Hillier, and Andrew Zisserman. A short note about kinetics-
600. arXiv preprint arXiv:1808.01340, 2018. 6

Shizhe Chen and Dong Huang. Elaborative rehearsal for
zero-shot action recognition. In IEEE International Confer-
ence on Computer Vision, 2021. 6,7, 8

Jaemin Cho, Seunghyun Yoon, Ajinkya Kale, Franck Der-
noncourt, Trung Bui, and Mohit Bansal. Fine-grained
image captioning with clip reward. arXiv preprint
arXiv:2205.13115,2022. 2,5

Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, and
Rita Cucchiara. Meshed-memory transformer for image cap-
tioning. In IEEE Conference on Computer Vision and Pattern
Recognition, 2020. 2

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova.  BERT: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 3,5, 6,7

Keval Doshi and Yasin Yilmaz. Zero-shot action recognition
with transformer-based video semantic embedding. arXiv
preprint arXiv:2203.05156, 2022. 7



[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. International Con-
ference on Learning Representations, 2021. 3

Valter Estevam, Rayson Laroca, Helio Pedrini, and David
Menotti. Global semantic descriptors for zero-shot action
recognition. IEEE Signal Processing Letters, 2022. 2
Zhiyuan Fang, Jianfeng Wang, Xiaowei Hu, Lin Liang, Zhe
Gan, Lijuan Wang, Yezhou Yang, and Zicheng Liu. Inject-
ing semantic concepts into end-to-end image captioning. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2022. 2

Junyu Gao, Tianzhu Zhang, and Changsheng Xu. I know the
relationships: Zero-shot action recognition via two-stream
graph convolutional networks and knowledge graphs. In
AAAI Conference on Artificial Intelligence, 2019. 7

Yuying Ge, Yixiao Ge, Xihui Liu, Dian Li, Ying Shan, Xi-
aohu Qie, and Ping Luo. Bridging video-text retrieval with
multiple choice questions. In IEEE Conference on Computer
Vision and Pattern Recognition, 2022. 2,7

Pallabi Ghosh, Nirat Saini, Larry S Davis, and Abhinav Shri-
vastava. All about knowledge graphs for actions. arXiv
preprint arXiv:2008.12432, 2020. 8

Meera Hahn, Andrew Silva, and James M Rehg. Action2vec:
A crossmodal embedding approach to action learning. arXiv
preprint arXiv:1901.00484, 2019. 2

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu
Chen. Deberta: Decoding-enhanced bert with disentangled
attention. arXiv preprint arXiv:2006.03654, 2020. 6, 7

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras,
and Yejin Choi. Clipscore: A reference-free evaluation met-
ric for image captioning. arXiv preprint arXiv:2104.08718,
2021. 2

Jiayi Ji, Yunpeng Luo, Xiaoshuai Sun, Fuhai Chen, Gen Luo,
Yongjian Wu, Yue Gao, and Rongrong Ji. Improving image
captioning by leveraging intra-and inter-layer global repre-
sentation in transformer network. In AAAI conference on
artificial intelligence, 2021. 2

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The Kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 6

Hildegard Kuehne, Hueihan Jhuang, Estibaliz Garrote,
Tomaso Poggio, and Thomas Serre. HMDB: a large video
database for human motion recognition. In /EEE Interna-
tional Conference on Computer Vision, 2011. 6

Chia-Wen Kuo and Zsolt Kira. Beyond a pre-trained object
detector: Cross-modal textual and visual context for image
captioning. In IEEE Conference on Computer Vision and
Pattern Recognition, 2022. 2

Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg,
Mohit Bansal, and Jingjing Liu. Less is more: Clipbert for
video-and-language learning via sparse sampling. In /IEEE
Conference on Computer Vision and Pattern Recognition,
2021. 7

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

13532

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
BLIP: Bootstrapping language-image pre-training for unified
vision-language understanding and generation. International
Conference on Machine Learning, 2022. 3, 6

Chung-Ching Lin, Kevin Lin, Lijuan Wang, Zicheng Liu,
and Linjie Li. Cross-modal representation learning for zero-
shot action recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, 2022. 2,7

Ji Lin, Chuang Gan, and Song Han. TSM: Temporal shift
module for efficient video understanding. In /EEE Interna-
tional Conference on Computer Vision, 2019. 8

Siqgi Liu, Zhenhai Zhu, Ning Ye, Sergio Guadarrama, and
Kevin Murphy. Improved image captioning via policy gradi-
ent optimization of spider. In IEEE International Conference
on Computer Vision, 2017. 2

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu. Video swin transformer. In /EEE
Conference on Computer Vision and Pattern Recognition,
2022. 8

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101,2017. 6
Yunpeng Luo, Jiayi Ji, Xiaoshuai Sun, Liujuan Cao,
Yongjian Wu, Feiyue Huang, Chia-Wen Lin, and Rongrong
Ji. Dual-level collaborative transformer for image caption-
ing. In AAAI conference on artificial intelligence, 2021. 2
Zhekun Luo, Shalini Ghosh, Devin Guillory, Keizo Kato,
Trevor Darrell, and Huijuan Xu. Disentangled action recog-
nition with knowledge bases. In Conference of the North
American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, 2022. 2

Pascal Mettes. Universal prototype transport for zero-
shot action recognition and localization. arXiv preprint
arXiv:2203.03971,2022. 2

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013. 2

Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang,
Gaofeng Meng, Jianlong Fu, Shiming Xiang, and Haibin
Ling. Expanding language-image pretrained models for gen-
eral video recognition. European Conference on Computer
Vision, 2022. 2,4,7, 8

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: Anim-
perative style, high-performance deep learning library. Ad-
vances on Neural Information Processing Systems, 2019. 6
Shi Pu, Kaili Zhao, and Mao Zheng. Alignment-uniformity
aware representation learning for zero-shot video classifica-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition, 2022. 7

Jie Qin, Li Liu, Ling Shao, Fumin Shen, Bingbing Ni, Jiaxin
Chen, and Yunhong Wang. Zero-shot action recognition with
error-correcting output codes. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017. 7

Zhaofan Qiu, Ting Yao, Chong-Wah Ngo, Xiao-Ping Zhang,
Dong Wu, and Tao Mei. Boosting video representation learn-
ing with multi-faceted integration. In /EEE Conference on
Computer Vision and Pattern Recognition, 2021. 7



[44]

(45]

[46]

[47]

(48]

[49]

[50]

(51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
2021. 7

Marc’ Aurelio Ranzato, Sumit Chopra, Michael Auli, and
Wojciech Zaremba. Sequence level training with recurrent
neural networks. arXiv preprint arXiv:1511.06732, 2015. 2
Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret
Ross, and Vaibhava Goel. Self-critical sequence training for
image captioning. In IEEE Conference on Computer Vision
and Pattern Recognition, 2017. 2,4, 6

Bernardino Romera-Paredes and Philip Torr. An embarrass-
ingly simple approach to zero-shot learning. In International
Conference on Machine Learning, 2015. 8

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. DistilBERT, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019. 5, 6,7

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
UCF101: A dataset of 101 human actions classes from
videos in the wild. arXiv preprint arXiv:1212.0402, 2012.
6

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, ¥. ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances on Neural
Information Processing Systems, 2017. 2

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. CIDEr: Consensus-based image description evalu-
ation. In IEEE Conference on Computer Vision and Pattern
Recognition, 2015. 2

Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li,
Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, and Lijuan Wang.
GIT: A generative image-to-text transformer for vision and
language. arXiv preprint arXiv:2205.14100, 2022. 3, 6
Mengmeng Wang, Jiazheng Xing, and Yong Liu. Action-
CLIP: A new paradigm for video action recognition. arXiv
preprint arXiv:2109.08472, 2021. 7

Qian Wang and Ke Chen. Alternative semantic representa-
tions for zero-shot human action recognition. In Joint Euro-
pean Conference on Machine Learning and Knowledge Dis-
covery in Databases, 2017. 7

Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, Yuan-Fang
Wang, and William Yang Wang. VaTeX: A large-scale,
high-quality multilingual dataset for video-and-language re-
search. In IEEE International Conference on Computer Vi-
sion, 2019. 6

Ronald J Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Rein-
forcement learning, pages 5-32, 1992. 2

Xun Xu, Timothy M Hospedales, and Shaogang Gong.
Multi-task zero-shot action recognition with prioritised data
augmentation. In European Conference on Computer Vision,
2016. 7

Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri,
Dan Jurafsky, and James Zou. When and why vision-

[59]

[60]

[61]

(62]

13533

language models behave like bag-of-words models, and what
to do about it? arXiv preprint arXiv:2210.01936, 2022. 5

Li Zhang, Flood Sung, Feng Liu, Tao Xiang, Shaogang
Gong, Yongxin Yang, and Timothy M Hospedales. Actor-
critic sequence training for image captioning. arXiv preprint
arXiv:1706.09601, 2017. 2

Li Zhang, Tao Xiang, and Shaogang Gong. Learning a deep
embedding model for zero-shot learning. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017. 8
Xuying Zhang, Xiaoshuai Sun, Yunpeng Luo, Jiayi Ji, Yiyi
Zhou, Yongjian Wu, Feiyue Huang, and Rongrong Ji. Rstnet:
Captioning with adaptive attention on visual and non-visual
words. In IEEE Conference on Computer Vision and Pattern
Recognition, 2021. 2

Yi Zhu, Yang Long, Yu Guan, Shawn Newsam, and Ling
Shao. Towards universal representation for unseen action
recognition. In IEEE Conference on Computer Vision and
Pattern Recognition, 2018. 2,7



