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Abstract— This paper is on highly accurate and highly
efficient human pose estimation. Recent works based on Fully
Convolutional Networks (FCNs) have demonstrated excellent
results for this difficult problem. While residual connections
within FCNs have proved to be quintessential for achieving
high accuracy, we re-analyze this design choice in the context of
improving both the accuracy and the efficiency over the state-of-
the-art. In particular, we make the following contributions: (a)
We propose gated skip connections with per-channel learnable
parameters to control the data flow for each channel within the
module within the macro-module. (b) We introduce a hybrid
network that combines the HourGlass and U-Net architectures
which minimizes the number of identity connections within the
network and increases the performance for the same parameter
budget. Our model achieves state-of-the-art results on the MPII
and LSP datasets. In addition, with a reduction of 3× in model
size and complexity, we show no decrease in performance when
compared to the original HourGlass network.

I. INTRODUCTION

Being one of the most challenging computer vision prob-
lems with a multitude of applications, human pose estimation
has been one of the primary research areas that the computer
vision community tried to solve with Deep Learning and
Convolutional Neural Networks (CNNs). Given that the
results produced by existing state-of-the-art methods look
at least impressive both qualitatively and quantitatively, it is
natural to question how much progress can be expected on
this problem over the next years and whether there is room
for further improvement.

Yet, from a practical perspective, many applications can-
not fully enjoy the high accuracy demonstrated by recent
advances. The reason is for this is twofold: (a) the bulk
of current work assumes the abundance of computational
resources (e.g. GPUs, memory, power) to run these models
which for many applications are not available. (b) In many
application domains (e.g. autonomous driving) accuracy is
absolutely essential, and there is very little room for accuracy
drop when, for example, more lightweight, compact, and
memory efficient methods are used.

Hence, although there are more and more methods pro-
posed recently that achieve top performance in difficult
benchmarks like the MPII [1] and LSP [17] and COCO [22],
we argue that there is a significant gap literature as there
are no methods which can get any close to this accuracy
when there are memory (in terms of # of parameters) and
computational power (in terms of flops) constraints. The
focus of this work is to offer an improvement over the state-
of-the-art under this setting.
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Fig. 1: The proposed gated skip connections with per-
channel learnable parameters for controlling the data flow
for each channel within the module (N is the number of
input channels to each conv. layer).

Besides being challenging, the problem of human pose
estimation under low memory and computing capacity has
received little attention from the research community so far.
To our knowledge there are only two very recent papers that
make an attempt towards this direction: the works of [4]
and [34]. Both methods aim at improving human pose esti-
mation accuracy by introducing novel architectural changes
at block [4] and network [34] level. Our work improves
upon these two works by looking into a component of the
network architecture that is used “as is” in most of recent
works: skip connections. While residual connections proved
to be quintessential for achieving high accuracy within Fully
Convolutional Networks, in this work we re-analyze this
design choice in the context of human pose estimation and
show that with simple improvements significant gains can
be achieved both in terms of accuracy and efficiency for the
whole complexity (memory, and flops) spectrum.

In particular, we make the following contributions:

• We propose gated skip connections with per-channel
learnable parameters to control the data flow for each
channel within the module. This has the simple effect
to learn how much information from the previous stage
is propagated into the next one per channel and encour-
ages each module learn more complicated functions.

• We introduce a hybrid network structure that combines
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the HourGlass [23] and U-Net [28] architectures. The
newly proposed architecture minimizes the number of
identity connections within the network, and is shown
to increase the performance within the same number of
parameters budget.

• We report state-of-the-art results across the whole spec-
trum of # parameters and FLOPS. Our method is
capable of producing a reduction of 65% in model
size and complexity (i.e. more twice as fast) with no
decrease in performance when compared to the original
HourGlass network. A larger version of our model
achieves state-of-the-art results on the MPII and LSP
datasets.

II. RELATED WORK

Here we review the related work, first for efficient neural
networks, where we define efficiency in terms of number of
FLOPs II-A and then for human pose estimation II-B.

A. Efficient neural networks

It is now widely accepted that the advent of more powerful
computational resources, and availability of large amount of
annotated data are at the root of the recent successes of
deep learning. However, aside from these, it is architectural
improvements that have made it possible to reach the re-
markable levels of performance attained on a variety of tasks,
ranging from image classification [10], [11] to fine-grained
recognition [23], [3], [38].

In particular, the depth of deep networks is a crucial aspect
of their performance. Training these has been possible since
AlexNet [20], and then VGG [30], the success of which has
led to deeper neural networks. However, this ever increasing
depth also makes for harder to train networks. This can be
explained by several factors: i) increase in the number of
parameters, ii) gradient vanishing or exploding. However,
recent architectural changes made it possible to train very
deep networks. The most important of these change was
the introduction of skip connections within neural networks,
which allow information to flow more easily within the
network, both at forward time (activation) or during the back-
ward pass (during which gradient can flow more easily, thus
alleviating vanishing or exploding gradients phenomena).

ResNet [10] uses these within blocks of convolution –with
or without bottleneck–. Finally, pushing this to the extreme,
more recently, DenseNet [13] proposes to introduce one to all
connections between a convolutional block and its successors
within the same block.

While the above methods focus on performance (typically
classification accuracy), neural networks can also be made
more efficient in terms of computation. For instance, in
[14], the authors propose to leverage 1 × 1 convolutions
and skip connections to achieve performance similar to
AlexNet on ImageNet but with a fraction of the parameters.
MobileNet [12] builds on the same principle but explicitly
parametrizes the convolutions as separable ones (e.g. their
kernels can be expressed as the sum of rank one tensors).

The same concept has been instrumental in improving
the state-of-the-art for human pose estimation, e.g. by intro-
ducing skip connections between the encoder and decoder
parts of U-Nets. We detail these changes in the following
subsection.

B. Human pose estimation

Current state-of-the-art on single person pose estimation
is held by variants of the so-called HourGlass [23], [38],
[3], [19], [8], [39], [6] and U-Net architectures [28], [33],
[35]. Both HourGlass and U-Net architectures consist of
a stack of encoder-decoder Fully Convolutional Networks
(see Fig. 2) with skip connections between the encoder and
the decoder part. On each skip connection between them a
residual block is usually placed. The resolution is decreased,
and respectively increased, 4 times (from 64 × 64px to
4× 4px.

In [37], the authors propose a coarse-to-fine learning
mechanism where an initial coarse prediction is refined at
a later stage by zooming-in into a region of interest and
predicting a correction (expressed as an offset from the
coarse detection). The work of Lifshitz et al. [21] proposes
to localize the landmarks using a dense voting technique
where joint probabilities are learned from relative keypoint
locations. In [2], the authors introduce a hybrid architecture
that combines a normal feed-forward model with a recurrent
block. In a similar spirit with [23], Wei et al. [38] propose
a 6-stack neural network to detect and gradually refine the
keypoint predictions. In [3], the authors attempt to improve
the localization process by diving the keypoint detection
task into two sup-problems: detection and regression. At
the first stage they detect only the visible landmarks using
a part detection network, while at the second one they
regress jointly the position of all keypoints, both visible and
occluded.

More recent methods attempt to combine the HG based
architecture with attention mechanisms [8], feature pyra-
mids [39] and adversarial training [7], [6]. The work of [8]
uses a Conditional Random Field in order to model the
correlations among nearby regions combining a holistic
attention model with a body part one. This way the network
learns to focus on both global and local details. In order
to enforce a stronger model, in [7], the authors propose
an adversarial training approach where the pose estimator
has the role of a generator. At training time a discriminator
is used to assess the quality of the produced heatmaps. A
similar approach is followed in [6], where a discriminator is
used to discern between feasible and biologically unfeasible
poses. Yang et al. [39] proposes a Pyramid Residual Module
to improve the scale invariance of the models. The Pyramid
Residual Module learns a series of convolutional filters at
various input scales, on features obtained using different
sub-sampling ratios. In [19], the authors propose a series of
architectural enhancements aimed at improving the overall
network robustness such as the addition of a multi-scale
supervision, a structure-aware loss and a keypoint masking
technique aimed at increasing the accuracy of the occluded
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(a) Baseline [23]. The features coming
from the encoder are merged in the de-
coder using element-wise summation, re-
sulting in the same dimensionality N .

c

N

2×N

(b) Proposed. The features are first con-
catenated; a convolutional layer with a 3×
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(c) Proposed. The features are concate-
nated and then processed using a grouped
convolutional layer with a kernel of size
3× 3.

Fig. 2: Overall network architecture. We depict the overall network architecture (top-row) and detail the various ways
in which features coming from the skip connections are agregated i) in existing work (2a), (ii) our proposed concatenation
approach (2b) and (iii) our proposed concatenation with grouped convolution (2c). Each yellow rectangular cuboid depicts
the hierarchical residual module shown in Fig. 1, the red one a max-pooling layer and the blue one a nearest neighbour
upsampling operation. For our method the number of parameters is varied by changing the width (i.e number of channels)
and the number of stacks.

points. With the goal of strengthening the intrinsic human
body model learned by the network, [33] introduces a
compositional model that learns the relation between various
body parts.

While most of the prior works focus on increasing the
network accuracy without enforcing any strict computational
requirements, herein we attempt to obtain a neural network
that performs well across different level of computational
resources. To our knowledge, the only papers that have
similar aims with our work are [4] and [35]. [4] proposes
to improve the speed of human pose estimation by fully
binarizing the features and the weights of a given network.
The work of [35] combines dense connections with the HG
model improving the overall accuracy and speed.

Our work is different to both [4] and [35] (as well
to all aforementioned papers on human pose estimation)
because it improves upon skip connections, one of the most
fundamental component of deep architectures which is used
“as is” by all methods for human pose estimation. We show
that the proposed enhancements significantly improves the
overall network performance within the same computational
budget.

III. METHOD

Here we introduce in detail our method (Section III-A
and III-B), the network architecture used as well as the
implementation and training details (Section III-C).

A. Soft-gated residual connections

As detailed in Section II-A, one of the key aspects that
made training very deep neural networks possible was the
introduction of residual networks [10]. Residual connections
have since become a ubiquitous part of current state-of-the-
art neural network architectures and are often considered a
quintessential aspect that drives their accuracy. Despite this,
we argue here that, at least for some cases, the presence of an
identity connection may have undesirable effects and hinder
the performance of the model.

In the quest for training very deep neural networks, the
work of [11], [31] explores the effect of using a hard gating
function g(x) = σ(Wgx+ bg), where σ(x) = 1

1−e−x is the
sigmoid function, Wg and bg the weights and respectively
the bias of a given hard gating transformations. Typically
g(x) is implemented using a convolutional layer with a ker-
nel size of 1×1. When tested on ResNet architectures, these
changes lead to sub-par results or even fail to converge [11].
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Fig. 3: Output distribution of the scaling factor α ∈ RN for various blocks through the network from the bottom to top (left
to right). Notice that most of the values are clustered around 0 and contained in the interval [−0.1, 0.1].
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(a) Features distribution at the
output of the baseline residual
block (i.e. the skip connection
is implemented using the Iden-
tity function), immediately after
summation.
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(b) Features distribution at the
output of the residual block that
uses the proposed soft gating
function (see Fig. 1), immedi-
ately after summation.

Fig. 4: Comparison of the distribution of the features
at the output of the residual block for the baseline
(Fig. 4a) and the proposed approach (Fig. 4b). Notice that
the proposed method, with the help of soft gating function,
can preserve the function learned by the residual module l. In
contrast, the baseline module is forced to incorporate all of
the information coming from the previous module, limiting
as a consequence its representational power.

Currently, despite their relatively shallow nature at a stack
level, all HourGlass-like architectures take the benefit of
using skip connections for granted. Herein, we argue that
this is not universally true and explore their effect in the
context of human pose estimation, showing that our method
can outperform across various computational budgets, archi-
tectures that make extensive use of skip connections [23],
[35] (see Section IV).

It is already widely accepted that ResNets learn an un-
rolled iterative estimation [9] with each residual unit learning
a small correction with respect to the previous unit. As such,
removing an arbitrary residual unit inside a macro-module
leads to an insignificant drop in performance [16] as long as
the first and the last units are kept. Since in an HourGlass
stack, typically, at each resolution level inside the encoder
and decoder a very small number of residual blocks are used
(usually one), forcing the blocks to learn a correction with
respect to the input hinders the learning process and goes
against the finding from [16] that suggest that at the transition
level between resolutions novel functions need to be learned
by the network. By addressing this, we will show bellow
that a 4 stacks HG network matches and outperforms all
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(a) Features distribution after the concatenation stage inside the
residual block.
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(b) Features distribution on the skip connection before scaling them
using α.
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(c) Features distribution on the skip connection after scaling them
using α.

Fig. 5: Comparison of the distribution of the features
in various scenarios for two layers from the bottom(left
column) and top of the network(right column). Notice that
after applying the scaling factors α to the features from the
skip connection (second row) most of the values are scaled
toward 0 (third row). This suggests that only a handful of
information (i.e. “residual information”) is actually useful at
the next stage. Combining directly the features coming from
the module and the skip connection may have undesirable
effect and hinder the overall performance since the function
will have to learn a more incremental step due to the
avalanche of information from the step t− 1.



of the previous methods that normally use 8 or more stacks
which suggests that our network can learn stronger and more
diverse functions.

In this work, we propose a novel way of improving the
residual module using a channel-wise soft gating mechanism
defined as bellow:

xl+1 = αxl + F(xl,Wl), (1)

where xl ∈ RC×w×h are the input features from the previous
layer, Wl is a set of weights associated with the lth residual
block and F a residual function implemented using a set of
convolutional layers (in this work using the module depicted
in Fig. 1). α ∈ RC×1 is a channel-wise soft gate (scaling
factor) that is learned via backpropagation.

Method # stacks # parameters FLOPs ×109 PCKh

CU-Net [35] 4 4.0M 5.17 88.0%
Ours 4 3.4M 4.27 88.0%

CU-Net [35] 8 10.1M 12.7 89.4%
Ours 4 8.5M 9.9 89.5%

TABLE I: PCKh-based on the MPII validation set for the
medium speed regime domain.

Herein, we apply the newly proposed soft gating mecha-
nism to the state-of-the-art module from [4], previously used
for quantized neural networks. In the process we explore
two different settings: (a) using a single soft gate for all
channels and (b) learning a value for each input channel.
As the results from Table II show, since different channels
encode different types of information, the best results can
be obtained using the channel-wise version that improves
the overall performance against the baseline consisting of
simple using the identity transformation (i.e. α = 1) by up
to 1%.

To visualize the effect of the scaling factor we added in the
skip connection to allow for soft-gating, we plot in Figure 3
the output distribution of the scaling factors. Interestingly, we
notice that the majority of the values are clustered around
0, which means that most of the information is not needed,
or potentially even harmful for training. This phenomenon
is observed across all layers of the network, regardless of
the depth. These observations confirm the importance of
this soft-gating parameter and its ability to filter redundant
information. This is further reinforced in Fig. 4 where the
features learned by the proposed residual module variation
are preserved after summation, since the scaling factors
allows the module to select only the useful information from
the previous stage. We also visualize how this scaling factors
affects the distribution of the weights in the supplementary
material. Notice that most of the features coming from the
previous block are filtered by the introduced channel-wise
scaling factor.

B. Improved network architecture

Here we introduce a new hybrid network structure that
combines the HourGlass [23] and U-Net [28] architectures.

α–skip learnable α PCKh

baseline 7 87.0%
α = 0.5 7 87.4%
α = 0.1 7 87.5%
α ∈ R1 X 87.6%
α ∈ RN X 88.0%

TABLE II: PCKh-based comparison with state-of-the-art on
the MPII validation set for different values and methods of
computing the scaling factor α.

By minimizing the number of identity connections within the
network, we are able to obtain superior performance with the
same number of parameters as existing networks.

The HourGlass architecture as introduced in [23] and
depicted in Fig. 2, consists of a series of encoder-decoder
macro-modules, where the predictions are gradually refined
at each stage. Each residual module from a particular resolu-
tion level in the encoder is connected with its counterpart in
the decoder. The connection can be realized either using an
Identity function (U-Net) or using another residual module
(HG). Typically in HG this data is fused using an element-
wise summation.

However, herein we argue that directly adding the features
from two different distribution is suboptimal, as such we
explore various way of aggregating the data coming from
different sources (i.e. places in the network). As such we
explore the following options: a) Concatenating the features
and then processing them inside the residual module using
a convolutional layer with 3 × 3 filters (Fig. 2b), b) Con-
catenating the features and the combining them inside the
residual module using a grouped convolutional layers, where
the number of groups corresponds with the number of data
sources, 2 in this case. Finally, we explore various block
choices on the skip connection between the encoder and the
decoder parts.

As the results from Table IV show, for the same parameters
budget (approx. 3.4M distributed across 2 stacks) concate-
nating the features and analyzing them jointly (groups=1)
leads to the best results. improving on top of the baseline by
0.5% when evaluated on the MPII validation set.

While we explored a series of different choices for the
transform layer placed on the skip connections between the
encoder and the decoder such as: [BatchNorm → ReLU →
1 × 1 Conv2D], [BatchNorm → ReLU → 3 × 3 Conv2D],
[1 × 1 Conv2D] etc we found no noticeable differences
between them across multiple runs as long as the number
of parameters across the entire network stayed roughly the
same. This suggests that the layers found on the big-skip
connections simple learn a feature projection.

C. Training

For training, all images were center cropped to 256 ×
256px around the labeled torso point. For LSP, since such
point is not provided, we simple used the center of the tight
bounding box. During training we randomly augmented the
data on-the-fly by applying random rotation (from −30◦ to



CU-Net [35] Ours# parameters # stacks FLOPs ×109 PCKh # stacks FLOPs ×109 PCKh
0.5M 2 0.77 81.6% 1 0.8 81.6%
1.0M 2 1.68 84.2% 2 1.39 84.8%
1.4M 2 2.14 85.6% 2 1.75 85.7%
1.9M 2 2.7 86.0% 2 2.43 86.4%
2.4M 2 3.5 86.3% 2 3.1 86.7%
2.9M 2 4.15 86.6% 2 3.75 87.1%

TABLE III: Comparison against the state-of-the-art method of [35] across the high speed regime domain. Notice that our
method consistently outperforms [35] up to 0.5% on the MPII validation set, while been less computationally demanding.
The number of FLOPs for both networks is estimated using an input image 256× 256px.

Connection type PCKh

Baseline (Fig. 2a) 87.5%
Proposed concat. (Fig. 2b) 88.0%
Proposed concat. and grouped (Fig. 2c) 87.8%

TABLE IV: PCKh-based comparison on the MPII validation
set for different methods of combining the features between
the decoder and the encoder parts of the network. The
results are reported on a model that contains approx. 3.4M
parameters (2 stacks with 128 features per block).

30◦)), scaling (from 0.75× to 1.25×), flipping and color
jittering. On MPII, we trained the models for 200 epochs
using RMSprop [36] and a batch size of 24. During this
time, the learning rate was varied from 2.5e − 4 to 1e − 5,
dropping it at epochs 75, 100 and 150, while the weight
decay was set to 0. The weights were initialized from an
uniform distribution while the scaling factor α with 0. At
the end of every HG stack we apply a pixel-wise MSE loss
defined as:

l =
1

N

N∑
n=1

∑
ij

∥∥∥Ŷn(i, j)− Yn(i, j)∥∥∥2 , (2)

where Yn(i, j) and Ŷn(i, j) represent the ground truth score
map at location (i, j) for the nth keypoint.

For LSP, we followed the best practices and finetuned
the models pretrained on MPII for 100 epochs using the
LSP training set + LSP-extended using the same learning
rate as previously, except that on this occasion we dropped
the learning rate every 25 epochs. The two missing points
from LSP were obtained by simply interpolating between the
annotated ones.

All of our models were implemented using pytorch [25].

IV. EXPERIMENTAL EVALUATION

In this section, we thoroughly experiment on all the
parameters of our model, validate our claims and compare
to the state-of-art.

A. Datasets

We perform experiments on the two most challenging
datasets for single person human-pose estimation: MPII and
LSP.

a) MPII: [1] is one the most challenging datasets
available to-date for articulated human pose estimation. The
dataset consists of 25,000 images containing more than
40,000 annotated persons with up to 16 keypoints and
occlusion labels. The images portrait humans across a large
set of activities and natural scenarios collected from youtube.
Out of this, and following [37], 25,000 persons were used
for training and 3,000 for validation.

b) LSP: [17] is a single person human pose estimation
dataset consisting of 2000 images, equally split between
training and validation that contains humans performing
various sport activities. Each image is annotated with up to
14 keypoints. The dataset was later expanded in [18] with
10,000 more images for training (LSP-Extended). However,
many of these annotations were noisy and were re-annotated
in [26].

B. Comparison with state-of-the-art

Herein, we compare the performance of the proposed
approach against that of other state-of-the-art methods on
the MPII and LSP datasets. Despite being significantly
shallower (4 stacks vs 8 [23], [35]) and computationally
lighter (see Table VII), our model achieves top performance,
surpassing many larger and heavier models. Furthermore, a
wider version of it, where we simple increase the number of
channels from 144 to 256 while keeping the number of stacks
equal to 4, reaches state-of-the-art results on both MPII and
LSP datasets.

As the results from Table V show, our smaller model
(8.5M parameters, 9.9 × 109 FLOPs, 4 stacks) surpasses
the HG baseline [23](25.5M parameters, 40 × 109 FLOPs,
8 stacks) and the recent efficient architecture proposed
in [35](10.1M, 12.7×109 FLOPs, 8 stacks) while being less
computationally demanding and having a smaller memory
footprint. Furthermore, a wider version of our model(26M
parameters, 33.5 × 109 FLOPs, 4 stacks) sets a new state-
of-the art results, improving upon the previously best results
by up to 0.5% on certain categories. It is important to note
that even the larger version of our model is computationally
comparable to the original HG network (33.5 × 109 vs
28.4 × 109 FLOPs) despite being 1.5% better. Similarly,
on LSP, our method achieves state-of-the-art results (see
supplimentary material for numerical results).



Method Head Shoulder Elbow Wrist Hip Knee Ankle Total

Pishchulin et al., CVPR’16 [26] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4
Lifshitz et al., ECCV’16 [21] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0
Gkioxary et al., ECCV’16 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1
Rafi et al., BMVC’16 [27] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3
Belagiannis&Zisserman, FG’17 [2] 97.7 95.0 88.2 83.0 87.9 82.6 78.4 88.1
Insafutdinov et al., ECCV’16 [15] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
Wei et al., CVPR’16 [38] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Bulat&Tzimiropoulos, ECCV’16 [3] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
Newell et al., ECCV’16 [23] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Ning et al., TMM’18[24] 98.1 96.3 92.2 87.8 90.6 87.6 82.7 91.2
Chu et al., CVPR’17 [8] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5
Chou et al., arXiv’17 [7] 98.2 96.8 92.2 88.0 91.3 89.1 84.9 91.8
Chen et al., ICCV’17 [6] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9
Yang et al., ICCV’17 [39] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0
Ke et al., ECCV’18 [19] 98.5 96.8 92.7 88.4 90.6 89.4 86.3 92.1
Tang et al., ECCV’18 [33] 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3
Chen et al., TPAMI’19 [5] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9
Ryou et al., CVPR’19 [29] 98.6 96.6 92.3 87.8 90.8 88.8 86.0 91.9
Sun et al., CVPR’19 [32] 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3

Ours (small) 98.5 96.4 91.5 87.2 90.7 86.9 83.6 91.1
Ours 98.6 97.0 93.0 89.2 91.7 88.9 86.0 92.4
Ours* 98.8 97.5 94.4 91.2 93.2 92.2 89.3 94.1

TABLE V: PCKh-based comparison with state-of-the-art on the MPII test set. Notice that our method matches and
surpasses the performance of the next top-performing method. Ours* was pre-trained on the HSSK dataset.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total

Yang et al., CVPR’16 [40] 90.6 78.1 73.8 68.8 74.8 69.9 58.9 73.6
Rafi et al., BMVC’16 [27] 95.8 86.2 79.3 75.0 86.6 83.8 79.8 83.8
Yu et al., ECCV’16 [41] 87.2 88.2 82.4 76.3 91.4 85.8 78.7 84.3
Belagiannis&Zisserman, FG’17 [2] 95.2 89.0 81.5 77.0 83.7 87.0 82.8 85.2
Lifshitz et al., ECCV’16 [21] 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7
Pishchulin et al., CVPR’16 [26] 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1
Insafutdinov et al., ECCV’16 [15] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1
Wei et al., CVPR’16 [38] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5
Bulat&Tzimiropoulos, ECCV’16 [3] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7
Chu et al., CVPR’17 [8] 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6
Yang et al., ICCV’17 [39] 98.3 94.5 92.2 88.9 94.7 95.0 93.7 93.9
Ning et al., TMM’18 [24] 98.2 94.4 91.8 89.3 94.7 95.0 93.5 93.9
Chou et al., CVPR-W’17 [7] 98.2 94.9 92.2 89.5 94.2 95.0 94.1 94.0

Ours 98.7 95.7 93.1 90.3 95.8 95.6 94.8 94.8

TABLE VI: PCK-based comparison with state-of-the-art on the LSP test set.

Method Yang et al. [39] Wei et al. [38] Bulat&Tzimiropoulos [3] Chu et al. [8] Newell et al. [23] Tang et al [35] Ours

# parameters 28M 29.7M 58.1M 58.1M 25.5M 10.1M 8.5M

PCKh 92.0% 88.5% 89.7% 91.5% 90.9% 90.8% 91.1%

TABLE VII: Comparison in terms of number of parameters and PCKh accuracy with state-of-the-art on MPII testing
set.

In addition to this, in order to asses the efficiency of
our method across the whole spectrum of computational
resources we compare our approach against that of CU-

Net [35]. As the results from Table III show, our method
matches or outperforms that of CU-Net in the high speed
regime (0.7-4 GFlops). Since we didn’t reduce the number of



features in the base blocks that precedes the first HourGlass
stack as in [35], our method performs similarly with CU-
Net when only 0.5M parameters are used. As we move into
the medium speed regime the improvements offered by the
proposed method become significantly larger, our approach
being able to match the performance offered by CU-Net
using 50% less HG stacks, 20% less parameters and FLOPs
(see Table I).

V. CONCLUSION

In this paper, we revisited residual units and introduced
a new learnable soft gated skip connections. Specifically,
our proposed block has gated per-channel skip connections,
where each channel has a learnable parameter that controls
the data flow between the current and previous residual
module. In addition, we introduce a hybrid network that
combines the HG and U-Net architectures which minimizes
the number of identity connections within the network and
increases the performance for the same parameter budget. We
demonstrate superior performance and efficiency on the chal-
lenging task of human body-pose estimation. Specifically,
our model obtains state-of-the-art results on the MPII and
LSP datasets. In addition, with a reduction of 65% in model
size and complexity, we show no decrease in performance
when compared to the original HG network.
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