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Abstract. This paper is on image and face super-resolution. The vast
majority of prior work for this problem focus on how to increase the
resolution of low-resolution images which are artificially generated by
simple bilinear down-sampling (or in a few cases by blurring followed by
down-sampling). We show that such methods fail to produce good results
when applied to real-world low-resolution, low quality images. To circum-
vent this problem, we propose a two-stage process which firstly trains a
High-to-Low Generative Adversarial Network (GAN) to learn how to de-
grade and downsample high-resolution images requiring, during training,
only unpaired high and low-resolution images. Once this is achieved, the
output of this network is used to train a Low-to-High GAN for image
super-resolution using this time paired low- and high-resolution images.
Our main result is that this network can be now used to effectively in-
crease the quality of real-world low-resolution images. We have applied
the proposed pipeline for the problem of face super-resolution where we
report large improvement over baselines and prior work although the
proposed method is potentially applicable to other object categories.

Keywords: Image and face super-resolution, Generative Adversarial
Networks, GANs.

1 Introduction

This paper is on enhancing the resolution and quality of low-resolution, noisy,
blurry, and corrupted by artefacts images. We collectively refer to all these tasks
as image super-resolution. This is a challenging problem with a multitude of ap-
plications from image enhancement and editing to image recognition and object
detection to name a few.

Our main focus is on the problem of super-resolving real-world low-resolution
images for a specific object category. We use faces in our case noting however
that the proposed method is potentially applicable to other object categories.
Although there is a multitude of papers on image and face super-resolution, the
large majority of them use as input low-resolution images which are artificially
generated by simple bilinear down-sampling or in a few cases by blurring fol-
lowed by down-sampling. On the contrary, the real-world setting has received

* Denotes equal contribution.
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Fig. 1: Super-resolution results produced by our system on real-world low-
resolution faces from Widerface [1]. Our method is compared against SRGAN
[2] and CycleGan [3].

little attention by the community. To our knowledge, this paper presents one of
the very first attempts towards real-world image super-resolution. A few results
produced by our system are shown in Fig. 1.

Main idea. There is a large list of nuisance factors which one needs to
take into account when doing real-world image super-resolution, including blur
(e.g. motion or defocus), compression artefacts, colour and sensor noise. These
nuisance factors are usually unknown (e.g. motion blur) and sometimes hard
to effectively model (e.g. the case of multiple degradations). If the true image
degradation model is different from the one assumed and modeled, inevitably,
this leads to poor performance during test time. To alleviate this, in this paper,
rather than trying to model the image degradation process, we propose to learn
it using a High-to-Low Generative Adversarial Network (GAN). Notably, the
proposed network uses unpaired image data during training and hence it does
not require pairs of low and high-resolution images but just two unrelated sets of
low- and high-resolution images with no correspondence. Once this is achieved,
we can use the High-to-Low GAN to “realistically” degrade and downsample
high-resolution images and use these images as input to learn super-resolution
under a “paired” image setting. The proposed architecture is shown in Fig. 2.

In summary our contributions are:

1. We present one of the first attempts to super-resolve real-world low-resolution
images for a given object category, namely faces in this paper.

2. To this end, and inspired by [3], we propose to train a High-to-Low GAN
using unpaired low- and high-resolution images which can be used to effec-
tively simulate the image degradation process. Following this, we use the
High-to-Low GAN to create paired low and high-resolution images which
can be used to train a Low-to-High GAN for real-world super-resolution.

3. In recent works on image super-resolution, the L2 pixel loss dominates the
GAN loss which plays a refinement role in making the images look sharper.
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In this work, we propose a GAN-centered approach in which the GAN loss
drives the image generation process. We note that the GAN loss used plays
a reciprocal role in High-to-Low and Low-to-High. In High-to-Low, it is used
to contaminate the high-resolution input image with noise and artefacts
coming from the Widerface dataset [1], whereas in Low-to-High it is used for
denoising. In both networks, the role of the L2 pixel loss is reduced to that
of helping the generator preserve the face characteristics (e.g. identity, pose,
expression).

4. We have applied the proposed pipeline to the problem of face super-resolution
where we report large improvement over baselines and prior work on real-
world, low-quality, low-resolution images from the Widerface dataset.

2 Closely related work

There is a very long list of image and face super-resolution papers and a detailed
review of the topic is out of the scope of this section. Herein, we focus on related
recent work based on Convolutional Neural Networks (CNNs).

The standard approach to super-resolution using CNNs is to use a fully
supervised approach where a low-resolution (LR) image is processed by a network
comprising convolutional and upsampling layers in order to produce a high-
resolution (HR) image which is then matched against the original HR image
using an appropriate loss function. We call this paired setting as it uses pairs of
LR and corresponding HR images for training.

We emphasize that the large majority of prior work use LR images which are
artificially generated by simple bilinear down-sampling of the corresponding HR
images (or in a few cases by blurring followed by down-sampling). No matter the
approach taken, the vast majority of image and face super-resolution methods
reviewed below are based on this setting. Notably, a recent challenge on super-
resolution [4] is also based on this setting. As it was recently shown in [5] and also
validated in this work, this setting cannot produce good results for real-world
low-resolution images.

Image super-resolution. Early attempts based on the aforementioned set-
ting [6, 7] use various Lp losses between the generated and the ground truth HR
images for training the networks which however result in blurry super-resolved
images. A notable improvement is the so-called perceptual loss [8] which ap-
plies an L2 loss over feature maps calculated using another pre-trained network
(e.g. VGG [9]). More advanced deep architectures for super-resolution including
recursive, laplacian and dense networks have been recently proposed in [10–12].

More recently, and following the introduction of GANs [13], the authors of
[2] proposed a super-resolution approach which, on top of pixel- and/or feature-
based losses, it also uses a discriminator to differentiate between the generated
and the original HR images which is found to produce more photo-realistic re-
sults. Notably, [14], which is an improved version of [2], won the first place in the
challenge of [4]. More recently, [15] proposed a patch-based texture loss which is
found to improve the reconstruction quality. Different from the aforementioned
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methods is [16] which does not use a GAN but proposes a pixel recursive super-
resolution method which is based on PixelCNNs [17].

From the aforementioned works, our method has similar objectives to those
of [5] which also targets the case of real-world image super-resolution. However,
the methodology used in [5] and the one proposed in this paper are completely
different. While [5] proposes to capitalize on internal image statistics to do real-
world super-resolution, our method proposes to use unpaired LR and HR images
to learn the image degradation process, and then use it to learn super-resolution.

Face super-resolution. Face super-resolution is super-resolution applied
to faces. Similarly to image super-resolution, the vast majority of face super-
resolution methods [18–23] are based on a paired setting for training and eval-
uation which is typically done on frontal datasets (e.g. CelebA [24], Helen [25],
LFW [26], BioID [27]).

The method of [21] performs super-resolution and dense landmark localiza-
tion in an alternating manner which is shown to improve the quality of the
super-resolved faces. The authors of [19] propose a patch-based super-resolution
method in which the facial regions to be enhanced are sequentially discovered
using deep reinforcement learning. Rather than directly generating the HR im-
age, the method of [20] proposes to combine CNNs with the Wavelet Transform
for predicting a series of corresponding wavelet coefficients. The recent work
of [22] is a GAN-based approach similar to the one proposed in [2]. In [18], a
two-step decoder-encoder-decoder architecture is proposed also incorporating a
spatial transformer network to undo face misalignment.

To our knowledge, the only method that reports face super-resolution results
for real-world LR facial images is the very recent work of [28] which presents
impressive qualitative results on more than 200 facial images taken from the
Widerface dataset [1]. However, [28] is face-specific making use of facial land-
marks for producing these results, rendering the approach inapplicable for other
object categories for which landmarks are not available or landmark localization
is not so effective. Contrary to many face super-resolution methods, the proposed
pipeline is potentially applicable to other object categories.

3 Method

3.1 Overall architecture

Given a LR facial image of size 16 × 16, our system uses a super-resolution
network, which we call Low-to-High, to super-resolve it into a HR image of
64 × 64. This Low-to-High network is trained with paired LR and HR facial
images. One first fundamental difference between this paper and prior work on
super-resolution is how the LR images are produced. In most prior work, the LR
images are produced by bilinearly downsampling the corresponding (original)
HR images, which completely ignores the degradation process (e.g. motion blur,
compression artefacts etc.). To alleviate this, and inspired by [3], in this work,
we propose to learn both degrading and downsampling a HR facial image using
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Fig. 2: Overall proposed architecture and training pipeline. See also Section 3.1.

another network which we call High-to-Low. Notably, High-to-Low is trained
using unpaired data from 2 completely different and disjoint datasets. The first
of these datasets contains HR facial images from a number of face alignment
datasets. The second dataset contains blurry and low quality LR facial images
from Widerface.

A second fundamental difference between this paper and previous work is
how the losses used to train both networks are combined with our paper putting
more emphasis on the GAN over the L2 pixel loss. In particular, while prior
methods also use a combination of a pixel loss and GAN loss (and in some cases
a feature loss), the GAN simply plays the role of making the images sharper.
On the contrary, our proposed method is fully GAN-driven, with the pixel loss
having the sole role of accelerating the convergence speed, especially early in the
training process and helping the GAN to preserve the identity and the overall
facial characteristics (e.g. pose, facial expression).

The overall architecture, which is end-to-end trainable, is shown in Fig. 2.
Note that at test time only the generator part of the Low-to-High network is
used. The datasets used for training and testing are described in Section 3.2. The
High-to-Low and Low-to-High networks are described in detail in Sections 3.3
and 3.4, respectively. The loss functions used are detailed in Section 3.5. Finally,
the training process is described in Section 3.6.

3.2 Datasets

This section describes the HR and LR datasets used during training and testing.
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HR dataset. Our aim was to create a balanced dataset in terms of fa-
cial pose, hence we created a dataset of 182,866 faces by combining a series of
datasets: a randomly selected subset of 60,000 faces from Celeb-A [24] (mainly
frontal, occlusion-free, with good illumination), the whole AFLW [29] (more than
20,000 faces in various poses and expressions), a subset of LS3D-W [30] (faces
with large variation in terms of pose, illumination, expression and occlusion), and
a subset of VGGFace2 [31] (10 large pose images per identity; 9,131 identities).

LR dataset. We created our real-world LR dataset from Widerface [1] which
is a very large scale and diverse face dataset, containing faces which are affected
by a large variety of degradation and noise types. In total, we used more than
50,000 images out of which 3,000 were randomly selected and kept for testing.

3.3 High-to-Low

In this section, we describe the overall architecture used for the High-to-Low
network. Both the generator and the discriminator are based on ResNet archi-
tectures [32, 33] using the basic block with pre-activation introduced in [33].

High-to-Low generator. The generator uses input images from the HR
dataset. Its architecture is similar to the ones used in [2, 28] with the main
difference being that the first layer takes as input the HR image concatenated
with a noise vector that was projected and then reshaped using a fully connected
layer in order to have the same size as one image channel. This is because the
problem at hand is one-to-many, i.e. a HR image can have multiple corresponding
LR ones, due to the fact that it can be affected by multiple types of noise coming
from different sources and applied in different amounts and ways. We model this
by concatenating the above-mentioned noise vector along with the HR image.
This is similar in nature to a conditional GAN [34], in which the label is the HR
image. A few visual examples illustrating the various noise types learned by the
proposed network are shown in Fig. 3.

The network has an encoder-decoder structure and consists of 12 residual
blocks equally distributed in 6 groups. Resolution is dropped 4 times using pool-
ing layers, from 64 × 64 to 4 × 4 px, and then it is increased twice to 16 × 16
using pixel shuffle layers. The High-to-Low generator is shown in Fig. 4a.

High-to-Low discriminator. The discriminator, shown in Fig. 5, follows
the ResNet-based architecture used in [35–37] and consists of 6 residual blocks
(without batch normalization), followed by a fully connected layer. Since the
input resolution of the High-to-Low discriminator is 16 × 16, the resolution is
dropped for the last two blocks only using max-pooling.

High-to-Low loss. The generator and the discriminator networks of the
High-to-Low network were trained with a total loss which is a combination of a
GAN loss and an L2 pixel loss. These are further described in Eq. 1 and detailed
in Section 3.5. For the GAN loss, we used an “unpaired” training setting: in
particular, we used real images from the LR dataset, i.e. real-world LR images
from Widerface, therefore enforcing the output of the generator (whose input are
images from the HR dataset) to be contaminated with real-world noisy artefacts.
We also used an L2 pixel loss between the output of the generator and the
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HR input Output from High-to-Low

Fig. 3: Examples of different low-resolution samples produced by our High-to-
Low network (described in Section 3.3) for different input noise vectors. Notice
that our network can model a large variety of image degradation types, in various
degrees, such as illumination, blur, colour and jpeg artefacts. Moreover, it learns
what types of noise are more likely to be found given the input image type (e.g.
gray-scale vs colour images). Best viewed in electronic format.

HR image after passing it through an average pooling layer (so that the image
resolutions match) to enforce that the output of the generator has similar content
(i.e. face identity, pose and expression) with the original HR image.

3.4 Low-to-High

Low-to-High generator. The generator accepts as input the output of the
High-to-Low network. The network consists of 17 residual blocks distributed in
3 groups: 2, 3 and 12. Each group has a skip connection that connects the first
and the last block within the group. Resolution is increased 4 times using bilinear
interpolation, from 16 × 16 to 64 × 64 px. The generator is shown in Fig. 4b.
We note that because sample diversity is already obtained at the previous stage
with the help of the noise vector used in the input of the High-to-Low, we did
not use an additional noise vector at this stage.

Low-to-High discriminator. The discriminator, shown in Fig. 5, is the
same as the one used in High-to-Low, with the exception of adding two new
max-pooling layers to accommodate for the increase in resolution.

Low-to-High loss. Similarly to High-to-Low, the generator and the dis-
criminator networks of Low-to-High were trained with a total loss which is a
combination of a GAN loss and an L2 pixel loss. Note that training in this case
fully follows the “paired” setting: For both losses, and for each input image, we
use the corresponding image from the HR dataset. We note that, although in
previous works, the GAN loss had a “secondary” role making the output image
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look sharper, in our case, it plays the major role for denoising the noisy input
LR image. The L2 pixel loss enforces content preservation.

3.5 Loss functions

We trained both High-to-Low and Low-to-High using a weighted combination of a
GAN loss and an L2 pixel. As mentioned earlier, a second fundamental difference
between this paper and previous work is how these losses are combined. While
recent works on image super-resolution also use such a combination (in many
cases there is also a feature loss), in these works, the L2 pixel loss dominates
with the GAN loss playing a refinement role for making the images look sharper
and more realistic (as the L2 pixel loss is known to generate blurry images).

On the contrary, in this work, we propose a GAN-centered approach in which
the GAN loss drives the image generation process. We note that the GAN loss
used plays a reciprocal role in High-to-Low and Low-to-High. In High-to-Low,
it is used to contaminate the HR input with noise and artefacts coming from
the Widerface dataset, whereas in Low-to-High it is used for denoising. In both
networks, the role of the L2 pixel loss is reduced to that of helping the generator
preserve the face characteristics (e.g. identity, pose, expression).

For each network, we used a loss defined as:

l = αlpixel + βlGAN , (1)

where α and β are the corresponding weights and βlGAN > αlpixel in general.
For both networks, for the GAN loss, we made use of the recent advancements

in the field and experimented with both the Improved Wasserstein [35] and the
Spectral Normalization GAN [36]. From our experiments, we found that they
both generated samples of similar visual quality. We note that, for our final
results, we used the latter one, due to the faster training.

Following [36], we used the hinge loss defined as:

lGAN = E
x∼Pr

[min(0,−1 +D(x))] + E
x̂∼Pg

[min(0,−1−D(x̂))], (2)

where Pr is the data distribution and Pg is the generator G distribution defined
by x̂ = G(x). For High-to-Low, Pr denotes the LR dataset (i.e. the LR Widerface
images), while for Low-to-High the HR dataset. See also Section 3.2.

The weights W of the discriminator D are normalized in order to satisfy the
Lipschitz constraint σ(W ) = 1 as follows:

WSN (W ) = W/σ(W ). (3)

Finally, the L2 pixel loss used minimizes the L2 distance between the pre-
dicted and the ground truth image and is defined as follows:

lpixel =
1

WH

W∑
i=1

H∑
j=1

(F (Ihr)i,j −GθG(Id)i,j)
2, (4)
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where W,H denote the size of the generated output image and F is a function
that maps the corresponding original HR image Ihr to the output resolution.
For High-to-Low, this function is implemented using an average pooling layer,
while, for Low-To-High, it is simply the identity function.

3.6 Training

To crop all facial images in a consistent manner, we ran the face detector [38]
on all datasets. To further increase the diversity, we augmented the data dur-
ing training by applying random image flipping, scaling, rotation and colour
jittering. In order to train the Low-to-High network, we generated on-the-fly LR
images, each time providing as input a different random noise vector to High-
to-Low, sampled from a normal distribution, in order to simulate a large variety
of image degradation types. Both the High-to-Low and Low-to-High networks
were trained for 200 epochs (about 570,000 generator updates), with an update
ratio 5:1 between the discriminator and the generator. In the end, we fine-tuned
them together for another 2,000 generator updates. The learning rate was kept to
1e−4 for the entire duration of the training process. We used α = 1 and β = 0.05
in Eq. 1. All of our models were trained using PyTorch [39] and optimized with
Adam [40] (β1 = 0 and β2 = 0.9).

(a) High-to-Low generator.

12

(b) Low-to-High generator.

Fig. 4: The generator architecture used for the (a) High-to-Low and (b) Low-to-
High networks. The residual block used is shown in Fig. 6b.

RealReal

FakeFake

0

1

0

1

Fig. 5: The discriminator architecture used for both High-to-Low and Low-to-
High networks. Note that, for High-to-Low, the first two max-pooling layers are
omitted since the input resolution is 16 × 16. The residual block used is shown
in Fig. 6a.
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(a) Residual block with pre-activation
and without batchnorm.
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(b) Residual block with pre-activation
and batch normalization as defined in
[33].

Fig. 6: The residual blocks used for the discriminator (a) and the generator (b).

4 Results

In this section, we evaluate the performance of our system, and compare it
with that of a few interesting variants and related state-of-the-art methods.
Our main results are on the 3,000 images of our LR test set which contains
images from the Widerface dataset. For this experiment, and because there are
no corresponding ground-truth HR images, besides visual results, we numerically
assess the quality of the generated samples using the Fréchet Inception Distance
(FID) [41]. Finally, for completeness, we also provide PSNR results on 1,000 test
images from the LS3D-W dataset using bilinearly downsampled images as input.
This is the standard super-resolution experimental setting used in prior work.

4.1 Methods compared

Other variants. Alongside the proposed method presented in Section 3, we
also evaluate the performance of a series of interesting variants, all of which are
detailed as follows:

1. Low-to-High-trained-on-bilinear: this is the Low-to-High network of Sec-
tion 3.4 trained on images that were bilinearly downsampled. The network
is trained with the loss of Eq. 1.

2. Low-to-High-trained-on-bilinear-blur: this is the Low-to-High network of Sec-
tion 3.4 trained on bilinearly downsampled images after being blurred with
a random blur kernel with a kernel size varying from 2 to 6 px. The network
is trained with the loss of Eq. 1.

3. Low-to-High+Low-to-High-pixel-loss: this is the Low-to-High network of Sec-
tion 3.4 that uses the High-to-Low network of Section 3.3 to generate the
LR training samples. The Low-to-High network is trained only using the L2

pixel loss in Eq. 4.
4. Low-to-High+High-to-Low-pixel-and-gan-loss: this is the Low-to-High net-

work of Section 3.4 that uses the High-to-Low network of Section 3.3 to
generate the LR training samples. The network is trained using the loss de-
fined in Eq. 1. This is the full implementation of the proposed method.
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State-of-the-art. Our method is compared both numerically and qualitatively
with 5 related state-of-the-art methods: 1 image super-resolution method, namely
SRGAN [2], 2 face super-resolution methods, namely Wavelet-SRNet [20] and
FSRNet [42], 1 unpaired image translation method, namely CycleGan [3], and 1
deblurring method, namely DeepDeblur [43]. SRGAN and Wavelet-SRNet were
trained on our training set using pairs of bilinearly downsampled - HR im-
ages. FSRNet provides only testing code (trained on their dataset using pairs
of bilinearly downsampled - HR images). CycleGan was trained similarly to our
method. Finally, for DeepDeblur we had 2 options: either use the pre-trained
model trained on their data (pairs of blurred - clear images) or re-train it on
our training set using pairs of bilinearly downsampled - HR images. The latter
option would make it very similar to SRGAN, hence we used the former option.

4.2 Super-resolution results

Quantitative results on our LR test set in terms of FID are shown in Table 1.
Qualitative results for several images are shown in Figs. 7 and 8. The visual
results for all 3,000 test images can be found in the supplementary material.
Moreover, we provide PSNR results on LS3D-W in Table 1. Our method clearly
outperforms all other variants and methods considered both numerically (in
terms of FID) and (more importantly) visually.
Comparison with other variants. As expected, the Low-to-High trained on
bilinearly downsampled images (Low-to-High-trained-on-bilinear) does not per-
form well and neither does the Low-to-High trained on bilinearly downsampled
images after blurring them with various blur kernels (Low-to-High-trained-on-
bilinear-blur). Overall, the results obtained by these methods are both noisy and
blurry. Because of this, we propose to learn the noise distribution from Widerface
images using the High-to-Low network. Directly training however such network
using an L2 pixel loss does not work well (Low-to-High+Low-to-High-pixel-loss).
We conclude that the L2 loss alone is not able to denoise the input and produce
good results. However, once the GAN loss (proposed method) is added, the
network is successfully able to both (a) produce high quality samples and (b)
denoise the images for most of the cases.

In addition to the above results, we also tried to quantify how close the
generated by the High-to-Low network images resemble the original LR images
from Widerface. To this end, their FID was found equal to 15.27 while the FID
between bilinearly downsampled and original LR images was found equal to
23.15. This result clearly illustrates the effectiveness of the proposed High-to-Low
network in producing images that faithfully represent real-world degradations.
Comparison with the state-of-the-art. In terms of FID, our method largely
outperforms all other methods. Moreover, from Figs. 7 and 8, we observe that our
method produces the most appealing visual results. Both results show that, in
contrary to all other methods considered, our High-to-Low network can model
the image degradation in real LR datasets. Although CycleGan also achieves
relatively low FID, from Figs. 7 and 8, it can be observed that visually the
produced results are of low quality. This is because the cycle consistency loss
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emphasizes too much on pixel-level similarity, creating a lot of noise artifacts in
the final output.

Finally, regarding our experiment on LS3D-W, as all other methods were
trained on pairs of bilinearly downsampled and original HR images, they have
an advantage and outperform our method. Our method however (trained using
the output of High-to-Low) provides competitive results (PSNR ≈ 20 dB).

Method FID PSNR

LR test set LS3D-W

SRGAN [2] 104.80 23.19
CycleGan [3] 19.01 16.10
DeepDeblur [43] 294.96 19.62
Wavelet-SRNet [20] 149.46 23.98
FSRNet [42] 157.29 19.45
Low-to-High (trained on bilinear) 85.59 23.50
Low-to-High (trained on blur + bilinear) 84.68 22.87
High-to-Low+Low-to-High (pixel loss only) 87.91 23.22
Ours 14.89 19.30

Table 1: (a) FID-based performance on our real-world LR test set. Lower is
better. (b) PSNR results on LS3D-W (the input LR images are bilinearly down-
sampled images).

4.3 Failure cases

By no-means we claim that the proposed method solves the real-world image
and face super-resolution problem. We show several failure cases of our method
in Fig. 9. We can group failures into two groups: the first one contains cases of
complete failures where the produced image does not resemble a face. For many
of these cases, we note that the input does not resemble a face either. Examples
of these cases are shown in the first two rows of Fig. 9. The second group contains
cases that the produced super-resolved face is distorted. These are mostly cases
of extreme blur, occlusion and large pose. Examples of these cases are shown in
the last two rows of Fig. 9. We need to emphasize here that many of the large
pose facial images of the HR dataset used for training are synthetically warped
into these poses (see [30]), and this is expected to have some negative impact on
performance. In total, we found that the percentage of fail cases in our test set
is about 10%.

5 Conclusions

We presented a method for image and face super-resolution which does not
assume as input artificially generated LR images but aims to produce good
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results when applied to real-world, LR, low quality images. To this end, we
proposed a two-stage process which firstly uses a High-to-Low network to learn
how to downgrade high-resolution images requiring only unpaired high- and low-
resolution images and uses the output of this network to train a Low-to-High
network for image super-resolution. We showed that our pipeline can be used
to effectively increase the quality of real-world LR images. We reported large
improvement over baselines and prior work.
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Fig. 7: Detailed qualitative results on our LR test set from Widerface. The meth-
ods compared are described in Section 4.1.
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Fig. 8: Additional qualitative results on our LR test set from Widerface. The
methods compared are described in Section 4.1.
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Fig. 9: Examples of failure cases. The input images are shown in the first and
third row while the output images produced by our method in the second and
fourth row, respectively. The images shown in the second row do not resemble
a face. The images in the fourth row do resemble a face but they are heavily
distorted.
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