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Abstract. This paper tackles the challenging problem of estimating the
intensity of Facial Action Units with few labeled images. Contrary to pre-
vious works, our method does not require to manually select key frames,
and produces state-of-the-art results with as little as 2% of annotated
frames, which are randomly chosen. To this end, we propose a semi-
supervised learning approach where a spatio-temporal model combining
a feature extractor and a temporal module are learned in two stages.
The first stage uses datasets of unlabeled videos to learn a strong spatio-
temporal representation of facial behavior dynamics based on contrastive
learning. To our knowledge we are the first to build upon this framework
for modeling facial behavior in an unsupervised manner. The second
stage uses another dataset of randomly chosen labeled frames to train a
regressor on top of our spatio-temporal model for estimating the AU in-
tensity. We show that although backpropagation through time is applied
only with respect to the output of the network for extremely sparse and
randomly chosen labeled frames, our model can be effectively trained
to estimate AU intensity accurately, thanks to the unsupervised pre-
training of the first stage. We experimentally validate that our method
outperforms existing methods when working with as little as 2% of ran-
domly chosen data for both DISFA and BP4D datasets, without a careful
choice of labeled frames, a time-consuming task still required in previous
approaches.

Keywords: Semi-supervised learning, Unsupervised representation learn-
ing, Facial Action Units

1 Introduction

Facial actions are one of the most important means of non-verbal communica-
tion, and thus their automatic analysis plays a crucial role in making machines
understand human behavior. The set of facial actions and their role in convey-
ing emotions has been defined by the Facial Action Coding System (FACS [7]).
FACS define a set of atomic facial movements, known as Action Units, whose
combination can be correlated with both basic and complex emotions. Action
Units are categorically modeled according to their intensities, with values that
range from 0, indicating the absence of an AU, to 5, indicating the maximum
level of expressivity of an AU.
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Fig. 1. Overview of our proposed approach. a) We want to learn a temporal model
for facial Action Unit intensity estimation that can be learned with a few randomly
chosen set of annotations. b) We propose to first learn a strong feature representation
through contrastive learning, by training the model to solve a proxy task, that requires
no labeling. The proxy task uses a simple non-linear predictive function, and aims at
predicting the feature representation that is similar to that of a specific target frame
xk, and at the same time dissimilar to the rest of the given sequence. c) Once the
model is trained to produce rich facial feature representations, we can further train
it for facial Action Unit intensity estimation by using sequences in which the labeled
frames are in random position in the sequence.

While plenty of works exist for AU detection (i.e. whether an AU occurs or not in
an image, regardless of its intensity), the more challenging task of automatically
estimating their intensity has received less attention. Recent advances in super-
vised methods incorporate a variety of techniques including attention [41,51,64],
co-occurrence modeling [47,59], or temporal dynamics [20,4]. All these methods
however require a large number of training instances to work properly, which en-
tails the time consuming task of dataset labeling. This is even more profound for
the problem of AU detection and intensity estimation where labeling is typically
performed at a frame-level (i.e. each video frame must be labeled). Our goal in
this paper is to devise a method that can effectively estimate AU intensity even
when a very small (of the order of 2%) and randomly chosen set of frames is
used for model training.

This line of work has been pursued by the research community only re-
cently [30,59,63,60,62,61]. While these works have shown remarkable results,
they still have some limitations: 1) They work on a per-frame basis, by learning
a strong image-based feature representation that can later be used for AU in-
tensity estimation. While some of these methods impose a temporal smoothing
through ranking [62,60], they still aim at learning a per-frame representation.
2) Some of these methods also require having a very specific set of annotations
in hand [63,60,62,61]. In particular, they work by assuming that annotations
are available for “peak” and “valley” frames, i.e. frames corresponding to a lo-
cal maximum or minimum on the intensity. Identifying these frames requires a
qualitative labeling of sequences before the annotation step. That is, while us-
ing peak and valley frames is effective with as little as 2% of annotated frames,
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these annotations require indeed evaluating segments of videos which is also an
expensive operation.

In this paper, we take a different path in semi-supervised AU intensity esti-
mation. We firstly assume a practical setting where only a very sparse (of the
order of 2%) and randomly chosen set of frames (of a given dataset) is labeled.
Our aim is to train a model which, even if trained on this sparse set of annotated
frames, it can make dense per-frame predictions of AU intensity for all frames
in a given test sequence. To this end, we build a model that combines a fea-
ture extraction network (ResNet-18, [17]) with a GRU unit [3], and a regressor
head on top of the GRU that can make predictions for each frame and train it
using back-propagation through time using only the predictions of the network
at the sparsely labeled frames. We found however that training this model from
scratch in an end-to-end manner using only a small number of labeled frames
is a rather difficult task. Hence, we further propose to firstly train the back-
bone (i.e. the feature extractor and the GRU unit) in an unsupervised way on
different unlabeled datasets, using the recent framework of contrastive learn-
ing [36,54,52,15,18,43,1]. The backbone is trained end-to-end with a contrastive
loss on unlabeled videos of facial behavior, and used thereafter to train a model
for AU intensity estimation using only few labels. An overview of our approach
is shown in Fig. 1.

Our main contributions can be summarized as follows:

– We are the first to propose a temporal modeling of facial actions that can be
learned with a sparse set of discontinuously and randomly chosen annotated
facial images. Our practical approach to AU intensity estimation requires as
little as 2% of annotated data.

– We are the first to apply the framework of contrastive learning for semi-
supervised AU intensity estimation. We propose a two-stage pipeline where
a model for obtaining a spatio-temporal facial representation is firstly trained
on large unlabeled datasets of facial behavior using a contrastive learning for-
mulation, and, then, the model is effectively trained for the task of AU in-
tensity estimation using a small number of sparsely annotated video frames.

– Our approach achieves state-of-the-art results on both BP4D and DISFA,
when using a randomly chosen subset of 2% frames.

2 Related work

2.1 Action Unit modeling

The majority of existing works in facial Action Unit intensity estimation work
on a fully supervised way, i.e. by assuming that a large amount of labeled data is
available[31,9]. Existing supervised methods are often split into methods that ex-
ploit the geometric structure of faces, also referred to as patch-based [64,29,65],
methods that exploit the temporal correlation of AUs [20,4], and those that ex-
ploit the correlation that exists between different Action Units [47,10,39,38,40].
Other methods attempt to exploit different types of correlation [33,28,5,53,49,8,51].
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Most recent methods reporting state of the art results on Action Unit intensity
estimation build on AutoEncoders [44], or on Heatmap Regression [41,35].

While there is a vast amount of literature in fully supervised methods for
Action Unit intensity estimation, few works have focused on the more challeng-
ing task of addressing the same goal in a semi-supervised manner. In [30], a
twin autoencoder is used to disentangle facial movements from head pose, the
learned representation is then used for Action Unit detection. In [63], an ordinal
relevance regression method is applied. In [59], the relation between emotions
and Action Units is used to generate a knowledge-graph that allows the use of
the emotion labels to train the AU detector without labels. In [48] a Restricted
Boltzmann Machine and Support Vector Regression approach to model the AUs
is proposed. In [60], a knowledge-based approach is proposed, exploiting the tem-
poral variation that exists between peak and valley frames. In [62], the temporal
ranking is exploited in a similar way, and a novel ADMM approach is used to
enforce different constraints. In [61], a learnable context matrix is used for each
AU, which combined with several patch-based feature fusion is capable of learn-
ing AU intensity from key frames only. The majority of these methods however
impose temporal constraints based on the fact that annotations are available for
peak and valley frames, i.e. frames that correspond to a local maximum and min-
imum, respectively. Our method bypasses this need by applying a self-supervised
pre-learning step, that learns a strong feature representation. Our approach uses
as little as 2% of annotated data. However, contrary to these methods, we use a
randomly chosen set of data.

2.2 Self-supervised learning in Computer Vision

Self-supervised learning, often referred to as unsupervised learning, is an ac-
tive research topic in Machine Learning. It involves defining a pretext or proxy
task, with a corresponding loss, that leads to strong feature representation. This
pretext task does not require the data to be labeled, e.g. it can be predicting rel-
ative location of image patches [6], predicting rotation from images [11], sorting
frames in a shuffled video [34], denoising [46] or colorization [56], or pseudo-
labeling through clustering [2].

More recently, a number of state-of-the-art self-supervised methods based on
the so-called contrastive learning formulation have been proposed [36,52,54,15,18,43,14,1].
The idea is to define a loss for unsupervised learning which maximizes the simi-
larity between the feature representations of two different instances of the same
training sample while simultaneously minimizes the similarity with the represen-
tations computed from different samples. Among these methods, in this work, we
build upon the Contrastive Predictive Coding of [36] which allows for a temporal
model to be learned in an unsupervised manner from video data, and hence it
is particular suitable for modeling facial behavior dynamics. To our knowledge,
we are the first building upon this model for unsupervised modeling of facial be-
havior. We also show how to apply this model for semi-supervised AU intensity
estimation.
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3 Method

We are interested in learning a spatio-temporal model for facial Action Unit in-
tensity estimation, that is capable of modeling the temporal dynamics of expres-
sions, as well as their feature representation, and that can be learned with few
labels. Thus, we first introduce the problem statement and notation in Sec. 3.1,
then we devote Sec. 3.2 to describing the model that will produce a structured
output representation, and present our two-stage approach to the model learning
in Sec. 3.3 and Sec. 3.4.

3.1 Problem statement and notation

We are interested in learning a model capable of predicting the intensity of
some Action Units in a given sequence, that at the same time captures the
spatial features responsible of displayed expressions and models the temporal
correlation between them. We want such a model to be learned in a scenario
where only a small set of frames are annotated with Action Unit intensity.

Let X = {xt}Tt=1 be a sequence of T video frames, where xt ∈ R3×H×W is
an RGB image of size H ×W . Our goal is to learn a model M that produces
a structured output Ỹ = {ỹt}Tt=1, where each ỹt ∈ RN corresponds to the
predicted intensity of each of the N Action Units of interest. In a fully supervised
setting, we would be given a set of ground-truth labels yt for each sequence, and
thus the modelM(· ; θ) could be learned through regression and backpropagation
through time [50]. However, learning the modelM is a hard task, and requires a
vast amount of per-frame labeled sequences. Also, training deep temporal models
is often a challenging task, very sensitive to the initialization. We now describe
our approach to learning the model efficiently with few labels.

3.2 Network

Our modelM is split into a feature extraction block f(· ; θf ), a temporal module
g(· ; θg), and a final regressor head c(· ; θc), with θ the parameters of each module.
The choice for the feature extractor f(· ; θf ) is that of a ResNet-18 [17], without
the last fully connected layer. In order to keep a locally-based receptive field
for the extracted features, we remove the average pooling layer. To reduce the
complexity of the network, the last convolutional block is set to 256 channels
rather than the typical 512. This way, for an input resolution of 128 × 128,
the network produces a feature representation of 256 channels, and of a spatial
resolution of 8×8, i.e. f(· ; θf ) ∈ R256×8×8. This way, each spatial output attends
a region of 16× 16 pixels in the input image.

The form of the temporal block g(· ; θg) is that of a Convolutional Gated
Recurrent Unit (GRU [3]), with the latent dimension set to be the same as
for the feature representation, i.e. 256 × 8 × 8. The GRU receives, at time t,
the input feature representation f(xt; θf ) ∈ R256×8×8, along with the previous
hidden state ht−1 ∈ R256×8×8, and propagates the hidden state at time t as
ht = g(f(xt; θf ),ht−1; θg) ∈ R256×8×8. The GRU is modified to receive a tensor
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rather than a vector, by setting all the internal gates to be convolutional layers,
with kernel size 1× 1.

Fig. 2. Network: the model
consists of a feature extrac-
tor, a temporal block, and a
regressor head.

Finally, a regressor head c(· ; θc) is placed on top
of the GRU to perform a per-frame Action Unit in-
tensity estimation. This head takes the hidden state
at time ht, and after applying an average pooling
operation, forwards the 256-dimensional frame rep-
resentation to a simple block consisting of a Batch
Normalization layer [19], and a linear layer that pro-
duces an N -dimensional output, where N is the num-
ber of the target AUs.

3.3 Unsupervised pre-training

It is worth noting that, even when working in a fully
supervised manner, training the above model is a
rather hard task. For the purposes of semi-supervised
learning, we propose to use instead a self-supervised
pre-training inspired by the contrastive learning [36],
which allows us to make the network produce strong
facial feature representations with no labels.

Our learning goal is defined through a proxy predictive function pk(· ; θp),
tasked with predicting the future feature representations f(xt+k; θf ), at some
time t + k from a given contextual information g(f(xt; θf ); θc), computed up
to time t. The learning goal is to make pk (g (f(xt)))

1 similar to f(xt+k), and
at the same time different from other feature representations computed at the
same time step k for a different image x′, f(x′t+k), at the same image x but at
a different time step k′, f(xt+k′), and at a different image x′ and time step k′,
f(x′t+k′). With p being a simple non-linear function, the learning burden lies on
a feature representation capable of predicting the future. While in [36] the time
step k is fixed, in [14] the time t+ k is added recursively from t+ 1 to t+ k.

Put formally, for a sequence X = {xt}Tt=1, the first C frames will represent
the context, whereas the last P = T − C frames will be used for the predictive
task. Throughout our experiments, T = 15 frames, and C and P are set to 10
and 5 frames, respectively, i.e. from the context estimated for the first 10 frames,
the goal is to predict the next 5 feature representations.

Let f
(i,j)
t represent the feature representation f(xt) at time t, at the spatial

location (i, j). Similarly, let p
(i,j)
t+k represent the output of the predictive function

pk(g(f(xt))), at time t + k, at the spatial location (i, j). We use a recursive
context generation:

pt+1 = p1(g(f(xt)))

. . . . . . . . .

pt+k = p1(g(pt+k−1))

1 We drop the dependency on the parameters θ for the sake of clarity
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Fig. 3. Self-supervised learning through predictive coding. A predictive function uses
the hidden state hC of the GRU, at time tC , to predict the feature representation
pC+1 at the next temporal step tC+1. This prediction is also used to obtain the next
hidden state hC+1. The feature prediction is then repeated to obtain pC+2. The pair
given by pC+2 and fC+2 (in green), is used as a positive sample, whereas all other
mixed pairs are used as negatives (orange pairs). For the sake of clarity we illustrate
only one positive pair. All other similar correspondences act also as positives during
training, see Sec 3.3. We can then backpropagate (red lines) the similarity scores for
the given pairs w.r.t. the contrastive loss defined in Eqn. 1, and learn a strong feature
representation without labels.

i.e. we enforce the predictions to be conditioned not only to on previous observa-
tions, but also on the previous predictions. Recall that g(f(xt)) = g(f(xt),ht−1),
i.e. all frames before t are summarized in the context at time t.

The learning is accomplished through a Noise Contrastive Estimation [13,12],
where the goal is to classify real from noisy samples. Real samples are in prac-

tice formed by pairs (f
(i,j)
t+k ,p

(i,j)
t+k ), while noisy samples are formed by pairs

(f
(i′,j′)
t+k′ ,p

(i,j)
t+k ). In other words, noisy samples are formed by pairs composed

of the feature representation at time t and spatial location (i, j), and all the
predictions taken from the same time position at different spatial locations, the
predictions taken at different time steps, and even the predictions computed at
different images in a given batch. For a given set of P predicted representations
with size H ×W , the loss is formulated as:

Lnce = −
∑
k,i,j

log
e〈f

(i,j)
t+k ,p

(i,j)
t+k 〉∑

k′,i′,j′ e
〈f (i

′,j′)
t+k′ ,p

(i,j)
t+k 〉

 (1)

where 〈·, ·〉 denotes the dot product, and is used as a similarity score between the
feature representations. In Eqn. 1, k ∈ {1 . . . P}, and (i, j) ∈ {(1, 1) . . . (H,W )}.
The loss within the brackets represents the typical cross-entropy objective used
for classification, where the goal is to classify the positive pair among a set of
P ×H ×W classes (i.e. pairwise scores). When the set of negatives is enhanced
with other images in the batch, the set of possible classes becomes B×P×H×W ,
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with B the batch size. In our setting, B = 20, P = 5, and W = H = 8, as
aforementioned, making the number of predictions be 6400. Note that in [36]
the number of classes is dozens. This makes our predictive task much harder,
making the representations be more locally distinct. The reason behind this
approach relies on that we want the representation to be strong for a downstream
task based on a per-frame classification. Minimizing Eqn. 1 leads to learning
the weights θf and θg without requiring labeled videos. This procedure allows
us to learn a strong representation with videos collected in-the-wild. A visual
description is shown in Fig. 3.

3.4 Learning with partially labeled data

Now, we turn into how to train the network when only a few labeled facial
images, randomly and discontinuously sampled, are available. In this paper, we
propose a simple approach that consists of choosing random windows around a
labeled frame, so that the position of the latter in the sequence varies each time
it is queried for updating the network parameters. Using this approach, we apply
back-propagation w.r.t. the output at the labeled frame. In other words, if only
the frame xt is labeled within a sequence X = {x}Tt=1, the classifier c(· ; θc) is
updated only with a given labeled frame, and the feature extractor and temporal
units, f(· ; θf ) and g(· ; θg), are updated through back-propagation through time
up to the labeled frame t. Denoting with yt the label for frame t, the loss is
formulated as:

Lsup = ‖yt − c(g(f(xt)))‖2, (2)

where it is important to recall the dependency of c(g(f(xt))) with all frames up
to t. This way, the parameters θf and θg are updated with all the frames in the
sequence up to t, and the parameters θc are updated only with the context given
by g at time t and the corresponding labeled frame. This approach is illustrated
in Fig. 4.

4 Experimental results

Data Throughout our experiments, we use three different datasets. For the self-
supervised pretraining described in Section 3.3, we used the raw videos from the
Aff-Wild2 database [22,25,26,24,27,23,55] (i.e. with no annotations). We use
422 videos from Aff-Wild2 with around 1.2 million frames in total. In order to
learn the feature representation using the predictive task, we used 351 videos for
training, and 71 videos for validation. For the Action Unit intensity estimation,
we use the BP4D and DISFA datasets. The BP4D database [58] is the main
corpus of the FERA2015 [45], and consists of videos of 41 subjects performing
8 different tasks, making it a total of 328 videos. For our experiments, we use the
official train and validation subject-independent partitions, consisting of 21 and
20 subjects, respectively. The database contains around 140, 000 frames, and is
annotated with AU intensity for 5 AUs. In addition to the BP4D, we evaluate
our method and perform a thorough ablation study on the DISFA database [32],
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Fig. 4. Learning with partially labeled data: the network produces a structured output
{ỹt}Tt=1, but only one frame yt is labeled. We apply Backpropagation through time
(BPTT) w.r.t. the labeled frame. While the labeled frames remain the same through
the training process, their position in a queried sequence is randomly shifted (i.e. the
number of frames before and after the labeled frame are randomly varied).

which includes 27 videos, each of a different subject, while performing computer
tasks, for an average of ∼ 4 minutes. It comprises around 130, 000 frames anno-
tated with the intensity of 12 AUs. To compare our method w.r.t. state-of-the-art
results, we perform a subject independent three-fold cross-validation, where, for
each fold, 18 subjects are used for training and 9 for testing. For our ablation
studies, we use only one of the three folds (the same for all studies).

Frame selection Following existing works on semi-supervised Action Unit in-
tensity estimation, we consider a labeled set of 2% of frames. However, contrary
to existing works, we select the labeled frames randomly. To avoid the results of
our ablation studies to be different due to the choice of data, we use the same
subset of images to train both our models and those used for ablation studies.
The number of training images for BP4D is 1498, whereas the number of images
for each fold in DISFA is 1162. Fig. 5 shows the AU intensity distribution.

Evaluation metrics We use the Intra-Class Correlation (ICC(3,1) [42]), com-
monly used to rank methods in existing benchmarks. For an AU j with ground-
truth labels {yji }Ni=1, and predictions {ỹji }Ni=1, the ICC score is defined as ICCj =
W j−Sj

W j+Sj , with W j = 1
N

∑
i

(
(yji − ŷj)2 + (ỹji − ŷj)2

)
, Sj =

∑
i(y

j
i − ỹji )2, and

ŷj = 1
2N

∑
i(y

j
i + ỹji ). In addition, we report the Mean Absolute Error (MAE).
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Fig. 5. AU intensity distribution for DISFA (left) and BP4D (right).

Set up We use the PyTorch automatic differentiation package in all our experi-
ments [37]. We use the publicly available S3FD face detector of [57] to detect a
facial bounding box in each video. The images are then tightly cropped around
the center and resized to 128×128. Some augmentation is applied to the images
for both the self-supervised training and the final stage (see below).

Self-supervised training The training is composed of 33509 sequences of 15
frames each, sampled with a stride of 2, and extracted from Aff-Wild2. To avoid
discontinuities, sequences where a face is not detected are discarded. The number
of valid test sequences to validate the performance of the predictor is 7164. To
minimize non-facial content we tightly crop around the center of the bounding
box. We apply a set of heavy augmentations during training, including uniform
rotation (±20 deg.), uniform scaling (±10%), random flipping, random jitter,
and random hue, contrast, saturation and brightness. The number of context
frames is set to 10, and the set of predicted frames is 5. We use the Adam opti-
mizer [21], with an initial learning rate of 10−3 and weight decay of 10−5. The
model is trained for 300 epochs using 8 GPUs, each having a batch size of 20
sequences. The training takes approximately 1 day to be completed. We evaluate
the capacity of the network to pick up the right pair by measuring the Top-n
accuracy on the validation set, with n = 1, 3, 5. In other words, Top-n shows
the percentage of samples in the validation set where the score corresponding to
the positive pair was among the highest n scores. The results are shown in the
second row of Table 1. As an ablation study, we also used a subset of DISFA
to perform the self-supervised training. See Section 4.1 for further details. The
Top-n accuracy for the DISFA is shown in the first row of Table 1.

Accuracy Top-1 Top-3 Top-5

DISFA .165 .467 .695
Aff-Wild2 .303 .651 .781

Table 1. Accuracy on the valida-
tion set of DISFA and Aff-Wild2 for
the Contrastive Predictive task. See
Sec 4.1 for details

Semi-supervised training To train the Ac-
tion Unit intensity regressor, we use learning
rate 10−5 with weight decay 10−5. We use
Adam with β = (0.5, 0.999). For the model
trained from scratch, we use a Kaiming ini-
tialization [16]. We observed that the model
is sensitive to the initialization. When using
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normally distributed random weights, the training was unstable, and the perfor-
mance was very poor.

4.1 Ablation study

We first perform an ablation study to validate the effectiveness of our proposed
approach w.r.t. different alternatives. To this end, we use the most challenging
fold from DISFA to train and validate each of the models, i.e. we used 18 subjects
to train and 9 to test. The best performing model for each method is chosen.
In particular, we illustrate the results of the following options in Table 2 and
Table 3.

– R18 - 2% We train a simple ResNet-18 on the same 2% of the data, by
minimizing the L2 loss between the available labels and the predictions on the
corresponding images. We use the same augmentation as mentioned above.

– R18 - Sup. We train the same ResNet-18 on the full dataset (58140 images).
– R18+GRU-scratch - 2% We train the whole pipeline without the self-

supervised training described in Section 3.3, i.e. we train the whole model
from scratch.

– R18+GRU-scratch Sup. We also trained the whole pipeline without the
self-supervised training in a fully supervised manner.

– R18+GRU-scratch Pseudo-GT In this setting, we used a different ap-
proach to semi-supervised learning, that of pseudo-labeling. In particular,
we used the R18 - 2% model to generate the labels for the training set, and
used these labels to train our model. In addition, the weights of the R18-2%
network are also used to initialize the R18+GRU pipeline.

– Ours(*DISFA) - 2% In this setting, we used the same training partition to
perform the self-supervised training described in Section 3.3, i.e. we used the
18 training videos from DISFA. Then, we initialized our network with the
generated weights, and trained using only the aforementioned 2% of labels.

– Ours - 2% This setting corresponds to using our proposed approach to learn
the model with 2% of the data.

– Ours - Sup. We finally evaluate the performance of the model when the
whole training set is available. This serves as an upper bound in the perfor-
mance of the proposed approach.

Discussion The results of all these models are shown in Table 2 and Table 3.
From these results, we can make the following observations:

– 1. Accuracy of self-supervised learning The results shown in Table 1 indicate
that the performance in the predictive task is superior when the network is
trained on Aff-Wild2 than when it is trained on DISFA. We attribute this
difference to the fact that DISFA has less variability than Aff-Wild2, mainly
due to the recording conditions. In addition, the training set for DISFA is
composed of barely 18 videos, and hence the number of negative samples are
highly likely to include segments that are too similar. In this scenario, the
negative samples become almost indistinguishable from the positive ones,
making the predictive task harder to learn.
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Dataset DISFA - Only 2% of frames are annotated
AU 1 2 4 5 6 9 12 15 17 20 25 26 Avg.

IC
C

R18 2% [.144] -.014 .375 [.129] .499 [.366] .737 .208 .355 [.210] .901 .458 .364
R18+GRU-scratch 2% -.032 -.126 .340 .009 .393 .043 .650 .077 .048 .004 .841 .434 .223
Ours(∗Disfa)-2% .084 [.070] .489 .033 .481 .225 [.772] [.337] .304 .127 .853 [.578] .363
Ours (∗Affwild2)-2% -.010 -.022 [.657] .068 [.566] .358 .737 .291 [.366] .109 [.944] .537 [.383]

M
A

E

R18 2% [.209] [.228] 1.022 [.042] .339 .311 .333 [.137] .306 .191 .307 .474 .325
R18+GRU-scratch 2% .555 .512 .984 .076 .442 .397 .542 .178 .252 [.150] .546 .436 .423
Ours(∗Disfa)-2% .238 .236 [.683] .098 .329 .287 [.326] .174 [.305] .217 .428 .389 [.309]
Ours(∗Affwild2)-2% .392 .463 .754 .129 [.304] [.277] .360 .189 .386 .201 [.260] [.298] .334

Table 2. Ablation study on DISFA in a scenario where only 2% of frames are anno-
tated. R18-2% refers to a simple ResNet-18 trained with 2% of the data. R18+GRU-
scratch-2% refers to the method described in Section 3.4, without the self-supervised
learning. Ours(*Disfa) refers to our method, with the self-supervised learning stage
being done on the DISFA dataset. Ours(*Affwild2)-2% refers to our method, trained
on 2% of the data.[bold] indicates best performance

– 2. Importance of pre-text training set In addition to the lower performance on
the predictive task, it is worth noting that the learned representation when
using few videos is much weaker than that learned from videos collected in
the wild. This is illustrated in the performance that the network yields in
the task of facial Action Unit intensity estimation. It is important to remark
that collecting videos in-the-wild that do not require labeling is nowadays
cheaper than annotating all the frames with 12 Action Units even for a small
number of videos.

– 3. Influence of self-supervised learning We observe that, whether on DISFA
or on Aff-Wild2, the results on the downstream task are remarkably better
than training the network from scratch. We observe this not only for our case
of interest where few labels are available, but also when training the network
in a fully supervised manner. We also observed that, when trained from
scratch, the network is certainly sensitive to the initialization. This has been
observed in [16], that indicates that a poor initialization with deep networks
can lead to vanishing gradients, making the training process unstable. In our
experiments, we observe that training the Resnet-18 in a supervised manner
without any temporal modeling yields better results than training the whole
pipeline, also in a supervised manner. We can see that our method is effective
both when training with few labels and when training in a supervised way.

– 4. Influence of pseudo-labeling We observe that this technique can be pow-
erful enough, yielding an ICC score similar to that given by training the
network from scratch in a fully supervised manner.

4.2 Comparison with state-of-the-art

We now show the results of our method w.r.t. reported state of the art meth-
ods on weakly supervised learning for facial Action Unit intensity estimation.
We report our results for both the BP4D case and for the three-fold cross val-
idation performed in DISFA, so as to make our results comparable to existing
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Dataset DISFA - All frames are annotated
AU 1 2 4 5 6 9 12 15 17 20 25 26 Avg.

IC
C

R18 Sup. .215 .030 .470 [.339] [.583] .382 .790 [.387] .476 .383 .887 .565 .459
R18+GRU-scratch Sup. .047 -.056 .366 .097 .455 .145 .775 .089 .313 .126 .812 .501 .306
R18+GRU-Pseudo-GT .096 .017 .469 .115 .470 .227 .653 .186 .317 .257 .578 .250 .303
Ours (∗Affwild2)-Sup. [.291] [.107] [.495] .281 .499 [.424] [.798] .327 [.513] [.473] [.908] [.648] [.480]

M
A

E

R18 Sup. .216 .222 1.002 .048 [.302] .302 .314 [.117] [.200] .134 .321 [.346] .294
R18+GRU-scratch Sup. .365 .341 1.022 .113 .364 .553 .352 .204 .444 .259 .601 .549 .431
R18+GRU-Pseudo-GT .225 .374 .816 .062 .640 .282 .530 .296 .844 .185 1.127 .631 .501
Ours (∗Affwild2)-Sup. [.161] [.200] [.815] [.043] .334 [.273] [.292] .127 .215 [.108] [.291] .362 [.268]

Table 3. Ablation study on DISFA where a fully supervised setting is applied. R18
Sup. corresponds to a Resnet-18 trained in a supervised manner. R18+GRU-scratch-
Sup. refers to the supervised training. R18+GRU-scratch-PseudoGT refers to a fully
supervised training using the pseudo-labels produced by the R18-2% shown in Table 2.
Ours(*Affwild2)-Sup. refers to our method, trained with all the labels. [bold] indicates
best performance.

works. We show the results of our method for BP4D in Table 4, and the re-
sults for DISFA in Table 5. We compare our method with the most recent works
reporting Action Unit intensity estimation with partially labeled data. In par-
ticular, we compare the performance of our method with that of KBSS [60],
KJRE [62], and CFLF [61]. Importantly, the three methods require the label-
ing of key frames, mainly due to the fact that one of the components for weakly
supervised learning relies on assuming that intermediate frames between keys
follow some monotonic behavior. Also, both the KBSS and CFLF work under
the basis of a 1% of labeled frames. However, these methods, reportedly, use a
different percentage of frames per Action Unit. Different from these methods, our
proposed approach works with a randomly chosen subset of data. As shown in
both Table 4 and Table 5, our method yields competitive results, and surpasses
the three aforementioned methods in terms of average ICC.

Dataset BP4D
AU 6 10 12 14 17 Avg.

IC
C

KBSS [60]* .760 .725 .840 .445 .454 .645
KJRE [62]* 6% .710 .610 [.870] .390 .420 .600
CFLF [61]* [.766] .703 .827 .411 [.600] .661
Ours 2% [.766] [.749] .857 [.475] .553 [.680]

M
A

E

KBSS [60]* .738 [.773] .694 .990 .895 .818
KJRE [62]* 6% .820 .950 [.640] 1.080 .850 .870
CFLF [61]* [.624] .830 .694 1.000 [.626] [.741]
Ours 2% .645 .913 .826 [.979] .628 .798

Table 4. Intensity estimation results on BP4D. (*) Indicates results taken from refer-
ence. [bold] indicates best performance.
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Dataset DISFA
AU 1 2 4 5 6 9 12 15 17 20 25 26 Avg.

IC
C

KBSS [60]* .136 .116 .480 .169 .433 .353 .710 .154 .248 .085 .778 .536 .350
KJRE [62]* 6% .270 [.350] .250 .330 .510 .310 .670 .140 .170 .200 .740 .250 .350
CLFL [61]* .263 .194 .459 [.354] .516 [.356] .707 [.183] [.340] [.206] .811 .510 .408
Ours 2% [.327] .328 [.645] -.024 [.601] .335 [.783] .181 .243 .078 [.882] [.578] [.413]

M
A

E

KBSS [60]* .532 .489 .818 .237 .389 .375 .434 .321 .497 .355 .613 .440 .458
KJRE [62]* 6% 1.020 .920 1.860 .700 .790 .870 .770 .600 .800 .720 .960 .940 .910
CLFL [61]* [.326] [.280] [.605] [.126] [.350] [.275] [.425] [.180] [.290] [.164] .530 .398 [.329]
Ours 2% .430 .358 .653 .194 .381 .370 .457 .247 .376 .212 [.446] [.387] .376

Table 5. Intensity estimation results on DISFA. (*) Indicates results taken from ref-
erence. [bold] indicates best performance.

5 Conclusion

In this paper, we proposed a novel approach to semi-supervised training of fa-
cial Action Unit intensity estimation, that is capable of delivering competing
results with as little as 2% of annotated frames. To this end, we proposed a self-
supervised learning approach that can capture strong semantic representations
of the face, that can later be used to train models in a semi-supervised way.
Our approach surpasses existing works on semi-supervised learning of Action
Unit intensity estimation. We also demonstrated that our approach, when used
in a fully supervised manner, largely outperforms a model trained from scratch,
thus demonstrating that our approach is also valid for supervised learning. The
experimental evaluation proved the effectiveness of our method, through several
ablation studies.
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