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Abstract

It is known that facial landmarks provide pose, expression
and shape information. In addition, when matching, for exam-
ple, a profile and/or expressive face to a frontal one, knowl-
edge of these landmarks is useful for establishing correspon-
dence which can help improve recognition. However, in prior
work on face recognition, facial landmarks are only used for
face cropping in order to remove scale, rotation and transla-
tion variations. This paper proposes a simple approach to face
recognition which gradually integrates features from different
layers of a facial landmark localization network into different
layers of the recognition network. To this end, we propose
an appropriate feature integration layer which makes the fea-
tures compatible before integration. We show that such a sim-
ple approach systematically improves recognition on the most
difficult face recognition datasets, setting a new state-of-the-
art on [JB-B, IJB-C and MegaFace datasets.

1 Introduction

Face recognition is the process of recognizing or verify-
ing a person’s identity from a given facial image or video.
It is an important problem in computer vision research with
many applications like access control, identity recognition in
social media, and surveillance systems. With the advent of
Deep Learning there has been a tremendous progress in de-
signing effective face recognition systems, yet, many appli-
cations (e.g. border control) require super-human accuracy
and, as such, improving existing systems is still an active re-
search topic. Our main contribution is a simple approach to
improving deep face recognition accuracy via incorporating
face-related information (e.g. pose, expression and landmark
correspondence) provided by a network for facial landmark
localization in order to facilitate face matching. Besides im-
proving accuracy, our approach can be readily incorporated
to all existing state-of-the-art face recognition methods.

The ultimate goal of face recognition is to learn a fea-
ture embedding for each face with small within-class and
large between-class distances. Traditionally, this has been
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considered a difficult problem due to large facial appearance
variations mostly caused by pose, facial expression, occlu-
sion, illumination and age. When matching, for example, a
profile A, to a frontal Ay face of the same identity A, this
distance must be smaller than the distance between Ay with
another frontal face By of identity B. Recently, Convolu-
tional Neural Networks (CNNs) have been shown that they
can learn to some extent such an embedding from large an-
notated face recognition datasets. Specifically, a few recent
works (Wen et al. 2016; Liu et al. 2017; Wang et al. 2018;
Deng et al. 2019) have proposed more effective loss func-
tions so that the learned feature embeddings for each face
are both separable and discriminative.

Our work has a similar objective but departs from all the
aforementioned works in that it does not propose a new loss
function. In contrast, for any given loss function, in this
work, we propose to learn a better feature representation for
face matching and recognition by integrating, during train-
ing, features from a pre-trained network for localizing fa-
cial landmarks. A network for detecting facial landmarks is
trained to learn by construction to establish correspondences
between faces in any pose and facial expression indepen-
dently of nuisance factors like illumination, blur, poor reso-
lution, occlusion etc. Although it seems natural to incorpo-
rate such features in a face recognition pipeline in order to
facilitate matching, to our knowledge, there is no prior work
which proposes to do so.

In summary, our contributions are:

e We are the first to explore how features from a pre-
trained facial landmark localization network can be used
to enhance face recognition accuracy. Contrary to prior
pipelines for face recognition, facial landmarks are not
just used for face cropping and normalization. Instead,
both landmark heatmaps and features from the facial
landmark network are integrated into the face recogni-
tion feature extraction process to (a) provide facial pose-,
expression-, and shape-related information, and (b) help
establish correspondence for improving face matching.

e We explore various architectural design choices at a net-
work level to identify the best strategy for integration.
Importantly, we propose a novel feature integration layer
which is able to effectively integrate the features from the



two networks although they are trained with very different
objectives and loss functions.

e We conducted extensive experiments illustrating how the
proposed approach, when integrated with existing state-
of-the-art methods, systematically improves face recog-
nition accuracy for a wide variety of experimental set-
tings. Our approach sets a new state-of-the-art on the chal-
lenging 1JB-B (Whitelam et al. 2017), IJB-C (Maze et
al. 2018) and MegaFace (Kemelmacher-Shlizerman et al.
2016) datasets.

2 Related Work

There is a long list of deep learning papers for face recog-
nition, and a detailed review of this topic is out of scope
of this section. Herein, we focus only on two lines of work
that have been shown to improve accuracy especially across
large pose variations.

New loss functions. The first line of work includes a
number of papers (Schroff, Kalenichenko, and Philbin 2015;
Wen et al. 2016; Liu et al. 2017; Wang et al. 2018; Deng et
al. 2019) which emphasize the importance of learning fea-
tures which are both separable and discriminative, through
the choice of a suitable loss function. Learning discrimi-
native features is not only important for open-set recogni-
tion (Liu et al. 2017) but also for robustness across pose as
naturally, one of the main reasons for large within-class dis-
tances is pose variation. While the requirement for separabil-
ity can be achieved with the softmax loss, learning discrim-
inative features is more difficult as, naturally, mini-batch-
based training cannot capture the global feature distribution
very well (Wen et al. 2016). To this end, FaceNet (Schroff,
Kalenichenko, and Philbin 2015) directly learns a mapping
from face images to a compact Euclidean space in which
the distance between two feature embeddings indicates the
similarity of the corresponding faces such that features ex-
tracted from the same identity are as close as possible while
features extracted from different identities are as far as pos-
sible. However, especially for large datasets, the number of
training triplets can be prohibitively large while triplet selec-
tion also poses difficulties.

To alleviate this, more recently, the method of (Wen et
al. 2016) (called Center loss) realizes the importance of
“center” and penalizes the Euclidean distance between the
learned deep features for each face and their corresponding
class centres in order to achieve intra-class concentration.
The work of (Liu et al. 2017), coined SphereFace, firstly
proposes to learn discriminative features in the angular do-
main and, to this end, it proposes to employ a multiplica-
tive angular margin which ensures that intra-class distances
are smaller than inter-class distances. Following the idea of
working in the angular domain, the more recent works of
CosFace (Wang et al. 2018) and ArcFace (Deng et al. 2019)
further define concepts of “center” and “margin” to obtain
highly discriminative features for face recognition.

Face normalization and pose augmentation. Beyond
different losses, another line of work which has been shown
to improve deep face recognition is through the use of mod-
els for face normalization and data augmentation. Early on,

the importance of face frontalization was shown in (Taigman
et al. 2014). However, frontalization for the case of large
poses is a difficult problem. To handle large pose variations,
the work of (Masi et al. 2016) proposes training pose-aware
CNNs with data rendered by a 3D model and pose-specific
frontalization. Face synthesis across pose, shape and expres-
sion for data augmentation and its effect on improving deep
face recognition is systematically evaluated in (Masi et al.
2016). Using 3DMMs for conditioning GANs for large pose
frontalization is proposed in (Yin et al. 2017). Simultane-
ously learning pose-invariant identity features and synthe-
sizing faces in arbitrary poses is proposed in (Tran, Yin,
and Liu 2017). (Deng et al. 2018) proposes a framework
for training Deep Convolutional Neural Network (DCNN)
to complete the facial UV map extracted from in-the-wild
images for pose-Invariant Face Recognition.

Our work also aims to extract more discriminative fea-
tures, however, not via proposing a new loss function but via
learning a better feature representation for recognition by in-
tegrating features from a pre-trained facial landmark local-
ization network. Moreover, our approach inherently copes
with large pose not via normalization or pose augmentation
but via establishing face correspondence, and typically is
much more efficient than such methods for both training and
testing.

3 FAN-Face
3.1 Overview

Our method is based on integration of features from 2 net-
works: a facial landmark localization network and a face
recognition network. The facial landmark localization net-
work is a pre-trained FAN (Bulat and Tzimiropoulos 2017b)
which has been shown to robustly detect facial landmarks
(we used the 51 internal landmarks, ignoring the ones on the
face boundary which are noisy) across large poses, facial ex-
pressions, occlusions, illumination changes, low resolution
etc., and currently represents the state-of-the-art. FAN is a
stacked hourglass network (Newell, Yang, and Deng 2016)
built using the residual block of (Bulat and Tzimiropoulos
2017a). We used 2 stacks as they suffice for good accu-
racy. The face recognition network, denoted as FRN, is a
ResNet (He et al. 2016) which is the method of choice for
various classification tasks (including face recognition).

The basic idea behind our method is simple: integrate
features from the pre-trained FAN into FRN while training
FRN. Other than that, the FRN is trained in standard ways
on face recognition datasets. We integrate two types of fea-
tures from FAN: (a) its output in the form of facial landmark
heatmaps, and (b) features from different layers extracted
in different resolutions. These two types of integration are
detailed in the subsequent subsections. An overview of our
method is illustrated in Fig. 1.

3.2 Heatmap Integration

Facial landmarks in FAN are localized through heatmap re-
gression: each landmark is represented by an output channel
H; € RMaxMu j — 1 ... N where a 2D Gaussian is
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Figure 1: Overview of our method: We use a pre-trained Face Alignment Network (FAN) to extract features and landmark
heatmaps from the input image. The heatmaps are firstly stacked along with the image and then passed as input to a Face
Recognition Network (FRN). The features (here taken from the high-to-low part of the 2-nd hourglass of FAN) are gradually
integrated with features computed by FRN. Fig. 2 shows an example of possible connectivity between the two networks. As the
features from the two networks are not directly compatible, we also propose a novel feature integration layer shown in Fig. 3.

placed at the landmark’s location, and then the network is
trained to regress these Gaussians (known as heatmaps).

The heatmap tensor H € RY*MuxMs hag a number of
interesting properties:

e it can be used to establish landmark correspondence
across different face images.

e it captures the spatial configuration of all landmarks, and
hence it captures pose, expression and shape information.

e as each heatmap is a confidence map, a number of works
have shown that it also provides spatial context and part
relationships (Wei et al. 2016).

Hence, we argue that it is natural to incorporate this tensor
into FRN to facilitate face matching.

This is done as follows: each training face image I €
REXMixMi g processed by FAN which produces heatmap
tensor H. The heatmaps are re-sampled to resolution M; x
M7 and then, a stacked image-heatmap representation:

IH ER(CJ’_N)XMIXA/II, (1)

is used as input to train the FRN. See also Fig. 1. Since
the heatmaps capture spatial information (the x,y coor-
dinates for each landmark can be directly obtained from
arg max{H;}), it is natural to directly stack them with the
image. However, in Section 5, we also investigate whether
H can be incorporated in other than the input layer of FRN.
We note that image-landmark heatmap stacking as a way to
guide the subsequent task has been used in a number of /ow-
and middle-level tasks like facial part segmentation and 3D
reconstruction (Jackson et al. 2017). However, to our knowl-
edge, we are the first to investigate its usefulness for the
high-level task of face recognition.

3.3 Feature Integration

The success of heatmap integration motivated us to explore
whether deeper integration between FAN and FRN is possi-
ble with the goal always being to increase face recognition
accuracy without significantly changing the number of the
parameters of FRN. In particular, let 2; € RC*HixWi and
Y € RCx*HrxWk pe features from the [—th and k — th lay-
ers of FAN and FRN respectively. We choose layers [ and &
so that the corresponding spatial resolutions approximately
match and then pass x; through an interpolation layer so that
they match completely. Following this, we compute new fea-
tures . € RO *HrxWe from:

Tk =y + (@, ), 2

where f is an integration layer computing a feature combi-
nation function (to be defined below). The newly generated
features g, are then passed to the next layer of FRN for fur-
ther processing. Note that this process is applied for several
layers of FRN allowing a deep integration of features from
FAN to FRN. Given that the FRN is a ResNet, there is a
lot of flexibility in choosing which layers the features to be
combined should be taken from, and as mentioned above, in
practice, the only constraint that we apply is that the features
combined have similar spatial resolutions. We always se-
lect the feature tensor at the end of each stage before down-
sampling. Two instantiations of this idea are as follows:

1-1 connectivity. In this integration scheme, we combine
1 feature tensor from FAN with 1 feature tensor from FRN
for each distinct spatial resolution. Note that FAN has one
top-down (high-to-low) and one bottom-up (low-to-high)
part and hence for each resolution we have two parts to pick
the feature tensors from. We found experimentally (see also
Section 5) that the high-to-low part provides better features



for face recognition. Fig. 2 shows how the two networks are
integrated under this scheme when FRN is a ResNet-34.
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Figure 2: Proposed 1:1 connectivity between FAN and FRN:
at each spatial resolution, a feature tensor from the high-to-
low part of the hourglass (shown in top) is combined with
a feature tensor from FRN (a ResNet-34 in this example
shown in bottom). The features are combined with the in-
tegration layer of Fig. 3 and used as input to the next layer
of FRN.

1-many connectivity. In this integration scheme, we com-
bine 1 feature tensor from FAN with all feature tensors from
FRN for each distinct spatial resolution. Also, we use learn-
able parameters v, to control the contribution of each mix-
ing layer f,i.e. §r = yr + Y& f (21, yr) thus allowing FRN
to learn where to integrate the features from FAN

3.4 Integration Layer

This section describes possible instantiations of the integra-
tion layer computing function f. We note that the proposed
layer is able to integrate features from networks trained with
very different objectives and loss functions, and hence it is
one of the main contributions of this work. Our Basic Layer

FAN feature ﬁ% BN —> Conv _\l/
Adaln —)@900nv > BN >()—> PReLU
FRN feature ﬁ T T

Figure 3: The proposed integration layer. FAN features are
processed by a batch normalization layer that adjusts their
scale followed by a 1 x 1 conv. layer that further aligns
them with FRN features. Then, An Adaptive Instance Norm
makes the distribution of the two features similar. The two
features are combined via concatenation. Next, there is a
1 x 1 conv. layer followed by a batch normalization layer so
that the combined feature can be added with the input FRN
feature. The very last layer is a non-linearity in the form of
PReLU.

(denoted as BL) is depicted in Fig. 3 and has the following
main features: (a) FAN feature tensor x; is firstly processed
by a batch normalization layer that adjusts its scale (con-
trast). This is followed by a 1 x 1 convolutional layer that

further aligns x; with the FRN feature tensor y; and makes
x; have the same number of channels as y;. (b) An Adaptive
Instance Norm layer that makes the distribution of ¥ to be
similar to that of x;. This is needed because the two feature
maps are derived from different tasks: x; pays more attention
to the spatial structure of the face, while y;, focuses on iden-
tity information. (c) Following this, the two feature tensors
are combined via concatenation. Then, there is another 1 x 1
convolutional layer followed by batch normalization, so that
the combined feature 3, has the same number of channels as
Yk so that they can be added together. The very last layer is
a non-linearity in the form of PReL.U.

We also propose 2 other variants of the proposed inte-
gration layer. The Simple Layer (SL) simply adds the two
feature tensors after the adaptive Instance Norm layer. The
Advanced Layer (AL) replaces the second 1 x 1 convolu-
tional layer with a bottleneck layer (1 x 1 followed by 3 x 3
followed by 1 x 1). In Section 5, we compare all 3 layers,
namely BL, SL, and AL.

3.5 Model Size and Computational Cost

It is important to note that the integration layers add only a
very small number of extra parameters to FRN. For example,
compared to the ResNet-34 baseline, the extra parameters
added by our method, depending on the FAN-FRN connec-
tivity and the integration layer used, are from 40K to 110K.
Note that most face recognition methods including ArcFace
use facial landmark detection for pre-processing. Our inte-
gration layer re-uses features from such a network by adding
minimal computational cost.

4 Training and Implementation Details

Loss functions. To train our networks, we mostly used the
ArcFace loss (Deng et al. 2019) which has been shown to
outperform all other recently proposed methods like (Wen et
al. 2016; Liu et al. 2017; Wang et al. 2018). This is important
because we show systematic improvements on top of (Deng
et al. 2019) which is state-of-the-art.

Training datasets. We trained our models on 3 popular
training datasets: for most of our experiments we used VG-
GFace2 (Cao et al. 2018) (an improved version of VG-
GFace (Parkhi et al. 2015)), containing 3.31M images of
9,131 subjects with large variations in pose, age, illumina-
tion, ethnicity and profession. This model was evaluated on
1JB-B (Whitelam et al. 2017) and IJB-C (Maze et al. 2018)
datasets. Besides, we trained our model on MS1MV2 (Deng
et al. 2019), a semi-automatically refined version of MS-
Celeb-1M dataset (Guo et al. 2016) which is one of the
largest wild dataset containing 98, 685 celebrities and 10
million images. As an amount of noise exists in the MS-
Celeb-1M dataset, the data is cleaned by (Wu et al. 2018).
There are 79, 077 identities and 5 million images remain-
ing. We also trained our model on CASIA-Webface (Yi et
al. 2014) which contains 0.49M face images from 10,575
subjects. This model was evaluated on LFW (Huang et al.
2008), YTF (Wolf, Hassner, and Maoz 2011) and MegaFace
(Kemelmacher-Shlizerman et al. 2016). In our experiments,
we removed the images that belong to identities from the
testing datasets.



Method 10771077

Baseline ArcFace (ResNet-34) 0.747 | 0.859
AS1 H2 0.750 | 0.864
ASI1 H2+ 0.771 | 0.866
AS2 H2,1-1,BL,12h-2 0.752 | 0.871
AS2 H2,1-1,BL,h21-2 0.772 | 0.876
AS3 H2,1-1,AL,h2l-2 0.766 | 0.873
AS3 H2,1-1,SL,h2l-2 0.739 | 0.857
AS4 H2,1M,BL,h2I-2 0.761 | 0.874
AS5 ResNet-34-Softmax 0.619 | 0.786
AS5 H2,1-1,BL,h21-2-Softmax | 0.657 | 0.796
AS6 H2, 1-1, BL, Wing 0.769 | 0.870
AS6 H2, 1-1, BL, Simple 0.770 | 0.874
AS6 H2, 1-1, BL, HRNet 0.771 | 0.877
AS7 Multi-task(2018) 0.583 | 0.731

Table 1: Verification results (%) for different variants of our
method on IJB-B dataset. All models were trained on a ran-
domly selected subset of 1M images from VGGFace2. The
variants and other details are presented in Section 5.

Other hyperparameters. We followed the publicly avail-
able code of (Deng et al. 2019) for implementing and train-
ing our models. For a fair comparison, we used the same
ResNet as ArcFace. FRN and the integration layers were
trained from scratch with SGD with a batch size of 512. The
weight decay was set to 5¢~% and the momentum to 0.9.
FAN remained fixed for the whole training procedure. All
models were implemented in PyTorch (Paszke et al. 2017).
Face pre-processing. We followed standard practices in
face recognition (Wen et al. 2016; Liu et al. 2017; Wang et
al. 2018; Deng et al. 2019) to crop a face image of 112 x 112
(without using landmarks for alignment) which was normal-
ized to [-1, 1]. The training faces were randomly flipped for
data augmentation.

5 Ablation Studies

In this section, we evaluate the accuracy of interesting vari-
ants and training procedures of the proposed method. The
experiments are done by training the models on a randomly
selected subset of 1M images from VGGFace2 dataset and
evaluating them on the IJB-B dataset. FRN in all cases is
a ResNet-34, and unless otherwise stated all methods are
trained with the ArcFace loss. All results are shown in Ta-
ble 1. We provide results for a wide range of False Accep-
tance Rates (FARs), however, when we compare methods
in the sections below, we primarily base our evaluations on
True Acceptance Rate (TAR) at FAR=10"* as in (Deng et
al. 2019). We consider the following cases:

AS1: Heatmap integration. For all of our experiments,
we used the heatmaps from the 2-nd hourglass (using the
heatmaps from the 1-st hourglass gave slighly worse result).
We call FAN-Face(H2), the variant of our model, obtained
by simple stacking these heatmaps with FRN (see Section
3.2). As Table 1 shows, this gives some decent improvement
over the baseline ArcFace. We also investigated whether
stacking heatmaps with features from various layers of FRN
is also beneficial. To this end, we stacked the heatmaps from

hourglass 2 (after appropriately resizing them) along with
the features produced by the last layer of FRN before each
resolution drop (features from 4 different places in total, one
for each spatial resolution). The performance of this variant,
called FAN-Face(H2+), is shown in Table 1. We observe that
this kind of deeper guidance using heatmaps offers good im-
provement for FAR=10"° but no obvious improvement for
FAR=10"*.

AS2: Different FAN subnetworks. We are now moving to
joint heatmap and feature integration. To perform feature in-
tegration, we started with 1-1 connectivity (see Section 3.3)
and the Basic Layer (see Section 3.4). We call this variant
FAN-Face(H2, 1-1, BL). We wanted to quantify which of
the h21 or 12h subnetworks is superior. To this end, we chose
the h21 and 12h subnetworks from hourglass 2. We call these
variants FAN-Face(H2, 1-1, BL, h21-2), and FAN-Face(H2,
1-1, BL, 12h-2). Table 1 shows the results: the h2l subnet-
work clearly provides much better features for integration
than those of 12h. This is expected as 12h features resemble
heatmaps, and we are already using heatmap information di-
rectly.

AS3: Different integration layers: Herein, we choose our
best performing version so far FAN-Face(H2, 1-1, BL, h2l-
2) and replace BL with the Simple and Advanced Layers,
denoted as SL and AL respectively (described in Section
3.4). The results are shown in Table 1. We observe that SL
performs worse because the features from FAN and from
FRN are from different tasks, and directly adding them to-
gether destroys the feature semantic information. Also, there
is little improvement if AL is used, so we chose BL for the
remaining of our experiments.

AS4: Different FAN-FRN connectivities. We compare the
1-1 with the 1-many (denoted as 1-M) connectivities (see
Section 3.3). The results are shown in Table 1. We observe
that 1-M offers no improvement over 1-1.

ASS: Using softmax loss. Using FAN-Face(H2, 1-1, BL,
h21-2), we also verified the improvements obtained by our
method using a different loss, namely the standard softmax.
See Table 1. We observe that with ArcFace loss, our method
improves upon the baseline even more. This emphasizes the
importance of having a good loss, and the complementary of
our approach with state-of-the-art losses.

AS6: Other face alignment methods. Using FAN-
Face(H2, 1-1, BL), we also verified the improvements ob-
tained by our method using different face alignment meth-
ods. AS7 shows results by replacing FAN with: a ResNet-34
trained in-house to regress x,y coordinates as in (Feng et al.
2018), a ResNet-34 trained in-house to regress heatmaps as
in (Xiao, Wu, and Wei 2018) and the pre-trained SOTA net-
work of (Sun et al. 2019). Results vary a bit because these
networks are not equally accurate but, overall, it is clear
that the proposed feature integration strategy and integration
layer are effective for all these networks, too. The above face
alignment networks have an encoder similar to hourglass, so
they can all be integrated within our framework.

For example, for H2,1-1,BL, Simple where (Xiao, Wu,
and Wei 2018) is used to replace FAN, integration is straight-
forward as the encoder is a ResNet-34 so it has the same
structure as our FRN. Similar to FAN, we do feature integra-



tion by taking the features at the end of each stage/module
before downsampling. We also do heatmap integration using
the predicted heatmaps. It is worth mentioning that (Feng et
al. 2018), also based on ResNet-34, regresses x,y coords but
heatmaps can be readily regenerated from them.

AS7: Multi-task (Yin and Liu 2018). A natural compari-
son that comes to mind is between our method and an FRN
that has a second head to also predict the landmarks in a
multi-task fashion, see for example (Yin and Liu 2018). For
the sake of a fair comparison, we preserved the ResNet-34
structure for this method and added a heatmap prediction
head after layer 4 (of ResNet-34). For training, the ground
truth for each face is provided by the FAN network. We used
L2 loss for face alignment and ArcFace loss for face recog-
nition. The ratio between the two losses was 0.1. Table 1
shows the obtained results. We observe that multi-task learn-
ing does not offer competitive performance.

Visualizations. Some examples of feature maps extracted
in early layers produced by our model and by ArcFace are
shown in Fig. 4. While some feature maps are similar there
are also a few that focus on facial landmarks.

6 Comparison with State-of-the-Art

In this section, we compare our approach with several state-
of-the-art methods on the most widely-used benchmarks for
face recognition.

Our models used: We provide the results provided by
our best model FAN-Face(H2, 1-1, BL, h21-2) which uses
heatmaps from hourglass 2, integrates features with 1-1 con-
nectivity from the h21 subnetwork of hourglass 2, and uses as
integration layer the Basic Layer of Section 3.4. We provide
results using both ResNet-34 and ResNet-50 for FRN.

Our in-house baselines: As a very strong baseline, for all
experiments, we used our implementation of ArcFace, using
both ResNet-34 and ResNet-50. Our implementation (based
on the code provided in (Deng et al. 2019)) gives slightly
better results than the ones reported in the original paper.
Besides, our implementation of CosFace (Wang et al. 2018)
with ResNet-50 was also compared because it was a strong
baseline in (Deng et al. 2019).

Other methods reported: For each experiment, we also re-
port the performance of a number of previously published
methods with the results taken directly from the correspond-
ing papers. For each method, we include, where possible,
the network used (e.g. ResNet-50, ResNet-34, VGG) and the
training set used.

The 1JB-B dataset (Whitelam et al. 2017) contains 1,845
subjects (21.8K still images and 55K video frames). In to-
tal, there are 12,115 templates with 10,270 genuine matches
and 8M impostor matches. The IJB-C dataset (Maze et al.
2018) is an extension of IJB-B, having 3,531 subjects (31.3K
still images and 117.5K video frames). In total, there are
23,124 templates with 19,557 genuine and 15,639K impos-
tor matches.

From the results in Tables 2 and 3, we can observe that,
for both datasets,, our methods provide consistently the best
performance at FAR=10"5, outperforming both previously
proposed methods and in-house baselines, by a large margin.

Method 10° 1007 ] 1073 [ 1072

R50 (2018) 0.647 | 0.784 | 0.878 | 0.938
SE50 (2018) 0.671 | 0.800 | 0.888 | 0.949
R50+SE50 (2018) 0.800 | 0.887 | 0.946

MNv (R50) (2018) 0.683 | 0.818 | 0.902 | 0.955
MNvc (R50) (2018) 0.708 | 0.831 | 0.909 | 0.958

R50+DCN(Kpts) (2018) - 0.850 | 0.927 | 0.970
R50+DCN(Divs) (2018) - 0.841 | 0.930 | 0.972
SE50+DCN(Kpts) (2018) - 0.846 | 0.935 | 0.974

SE50+DCN(Divs) (2018) - 0.849 | 0.937 | 0.975
ArcFace (R50) (2019) 0.812 | 0.898 | 0.944 | 0.976
ArcFace (R34, in-house) | 0.775 | 0.885 | 0.940 | 0.973
Ours (R34) 0.817 | 0.900 | 0.945 | 0.974
CosFace (R50, in-house) | 0.806 | 0.895 | 0.945 | 0.972
ArcFace (R50, in-house) | 0.814 | 0.902 | 0.946 | 0.974
Ours (R50) 0.835 | 0.911 | 0.947 | 0.975

Table 2: Evaluation of different methods for 1:1 verifi-
cation on IJB-B dataset. R34 and R50 denote ResNet-34
and ResNet-50. SE50 denotes SENet-50. All methods were
trained on VGGFace2 dataset.

Notably, our ResNet-34 model provides performance which
is better or in par with previously state-of-the-art ResNet-
50-based models.

Method 10° 1001073 [ 1072

R50 (2018) 0.734 | 0.825 | 0.900 | 0.950
SE50 (2018) 0.747 | 0.840 | 0.910 | 0.960
R50+SE50 (2018) 0.841 | 0.909 | 0.957

MNv (R50) (2018) 0.755 | 0.852 | 0.920 | 0.965
MNvc (R50) (2018) 0.771 | 0.862 | 0.927 | 0.968

R50+DCN(Kpts) (2018) - 0.867 | 0.940 | 0.979
R50+DCN(Divs) (2018) - 0.880 | 0.944 | 0.981
SE50+DCN(Kpts) (2018) - 0.874 | 0.944 | 0.981
SE50+DCN(Divs) (2018) - 0.885 | 0.947 | 0.983
ArcFace (2019) 0.861 | 0.921 | 0.959 | 0.982
ArcFace (R34, in-house) | 0.851 | 0.912 | 0.955 | 0.981
Ours(R34) 0.873 | 0.926 | 0.960 | 0.981

CosFace (R50, in-house) | 0.864 | 0.918 | 0.952 | 0.980
ArcFace (R50, in-house) | 0.872 | 0.924 | 0.959 | 0.982
Ours(R50) 0.874 | 0.935 | 0.959 | 0.982

Table 3: Evaluation of different methods for 1:1 verifi-
cation on IJB-C dataset. R34 and R50 denote ResNet-34
and ResNet-50. SE50 denotes SENet-50. All methods were
trained on VGGFace?2 dataset.

We also conducted the MS1MV2 experiment reported in
(Deng et al. 2019) using ResNet-100. Please see Table 4.

6.1 MegaFace Dataset

MegaFace (Kemelmacher-Shlizerman et al. 2016) is a
dataset for evaluating the performance of face recognition at
million-level distractors. It includes 1M images of 690K dif-
ferent individuals as the gallery set and 100K photos of 530
unique individuals from FaceScrub (Ng and Winkler 2014)
as the probe set. In MegaFace, there are two testing scenar-
ios, identification and verification. Here, and for the sake of
fair comparison with prior work, all the proposed and in-
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Figure 4: Visualization of feature maps from ArcFace (shown in top) and our model (shown in bottom). By using FAN features
to guide FRN learning, facial landmark related attention is added to the learned features.

1JB-B 1JB-C

Ms/Ds Ver 1d Ver 1d

107* [ k=1 | k=5 | 10~* | k=1 | tk=5

ArcFace | 945 | 932 | 958 | 959 | 944 | 96.5
Ours 954 | 93.7 | 96.1 | 96.8 | 948 | 97.0

Table 4: Results (%) of our method and ArcFace (in-house)
on MSIMV2 using ResNet-100. Verification (Ver) is at
FAR=10"*. Identification (Id) is using gallery 2. rk-1 is
rank-1 and rk-5 is rank-5.

house models were trained on the CASIA dataset.

Method Network 1d (%) | Ver (%)
Softmax (2017) ResNet-64 | 54.86 65.93
SphereFace (2017) | ResNet-64 | 72.73 85.56
CosFace (2018) ResNet-64 | 77.11 89.88
ArcFace (2019) ResNet-50 | 77.50 92.34

ArcFace (in-house) | ResNet-34 | 75.52 89.53
Ours ResNet-34 | 77.54 92.06
CosFace (in-house) | ResNet-50 | 75.93 91.02
ArcFace (in-house) | ResNet-50 | 76.44 91.44
Ours ResNet-50 | 78.32 92.83

Table 5: Identification and verification results on MegaFace
Challenge 1. Id refers to rank-1 face identification accuracy
and Ver refers to face verification TAR (True Acceptance
Rate) at 10~% FAR (False Acceptance Rate). All methods
were trained on CASIA dataset.

Table 5 shows the obtained results. We observe that our
ResNet-50 model outperforms all previous methods and in-
house baselines, significantly. Again, our ResNet-34 model
is the second best performing model, slightly outperforming
the original implementation of ArcFace (Deng et al. 2019)
for identification which however used a ResNet-50 model.

6.2 LFW and YTF Datasets

We also report results on LFW (Huang et al. 2008)
(13,233 web-collected images from 5,749 individuals) and
YTF (Wolf, Hassner, and Maoz 2011) (3,425 videos from
1,595 different identities). As typical in literature, our
models and in-house baselines, were trained on CASIA

Method Network LFW | YTF
Softmax (2017) ResNet-64 97.88 | 93.1
HiReST-9 (2017) | AlexNet (2012) | 99.03 | 95.4
SphereFace (2017) ResNet-64 99.42 | 95.0
CosFace (2018) ResNet-64 99.33 | 96.1

ArcFace (2019) ResNet-50 99.53 -
ArcFace (in-house) ResNet-34 99.40 | 95.42
Ours ResNet-34 99.52 | 96.34
CosFace (in-house) ResNet-50 99.30 | 95.78
ArcFace (in-house) ResNet-50 99.47 | 96.13
Ours ResNet-50 99.56 | 96.72

Table 6: Verification performance (%) on LFW and YTF
datasets.

dataset (Yi et al. 2014). Following the unrestricted proto-
col with labelled outside data (Huang and Learned-Miller
2014), we report the performance our models on 6,000 face
pairs from LFW and 5,000 videos pairs from YTF in Ta-
ble 6. As in our previous experiments, our ResNet-50 model
performs the best while our ResNet-34 is the second best
along with the ArcFace ResNet-50-based model of (Deng et
al. 2019).

7 Conclusions

We proposed a system that uses features from a pre-trained
facial landmark localization network to enhance face recog-
nition accuracy. In our system, both landmark heatmaps and
features from the facial landmark localization network are
integrated into the face recognition feature extraction pro-
cess to provide face related information and establish corre-
spondence for face matching. We explored various architec-
tural design choices at a network level to identify the best
strategy for integration and, proposed a novel feature inte-
gration layer which is able to effectively integrate the fea-
tures from the two networks. We conducted extensive exper-
iments illustrating how the proposed approach, when inte-
grated with existing state-of-the-art methods, systematically
improves face recognition accuracy for a wide variety of ex-
perimental settings. Our approach is also shown to produce
state-of-the-art results on the challenging 1JB-B, IJB-C and
MegaFace datasets.
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